Preview

Title

Advanced search

Diabetic Cardiovascular Autonomic Neuropathy: Diagnosis and Treatment

https://doi.org/10.31550/1727-2378-2024-23-8-68-74

Abstract

Aim. To systematize modern data on risk factors, clinical picture, diagnostics of diabetic cardiovascular autonomic neuropathy (CAN), and to highlight the main directions of its prevention and treatment.

Key points. CAN (autonomic cardiovascular neuropathy) is a form of diabetic autonomic neuropathy in which, due to damage to sympathetic and/or parasympathetic fibers, the regulation of cardiac activity and vascular tone is impaired. Despite a significant increase in the risk of cardiovascular disease, CAN often remains unrecognized, which leads to the development of heart rhythm disturbances, vascular tone disorders and increases the risk of death from all causes. Among all forms of diabetic neuropathy, it is CAN that is associated with the highest mortality. The risk of CAN increases by 6% per year in type 1 diabetes mellitus (DM) and by 2% per year in type 2 DM. The main factor of pathogenesis is chronic hyperglycemia, leading to oxidative stress and accumulation of advanced glycation end products, which damage first the parasympathetic and then the sympathetic link of the autonomic nervous system. Damage to autonomic regulation in CAN is always characterized by persistent and, as a rule, drug-resistant disorders. Persistent tachycardia in combination with painless myocardial ischemia significantly increases the risk of death from myocardial infarction and its complications. Diagnostics of CAN is currently based mainly on functional tests that can only detect an advanced process; sensitive and specific examination methods that allow assessing the initial manifestations of CAN are only being developed. Drugs that would have proven efficacy in relation to CAN are also not registered at present, but achieving target glycemia values can significantly slow down its progression. Modern drugs with neuroprotective properties can also have a positive effect on the initial manifestations of CAN.

Conclusion. Early detection and prevention of CAN are important clinical tasks. Currently, the key factor in preventing the development and progression of CAN is maintaining normal glycemia. The study of the effect of new classes of drugs on the course of CAN is ongoing; the data obtained suggest the possibility of some preventive potential for CAN in modern hypoglycemic drugs with a neuroprotective effect. 

About the Authors

G. V. Semikova
Pavlov First Saint Petersburg State Medical University
Russian Federation

Saint Petersburg



Yu. Sh. Khalimov
Pavlov First Saint Petersburg State Medical University
Russian Federation

Saint Petersburg



A. V. Lisker
Pavlov First Saint Petersburg State Medical University
Russian Federation

Saint Petersburg



E. A. Polyakova
Pavlov First Saint Petersburg State Medical University
Russian Federation

Saint Petersburg



A. R. Volkova
Pavlov First Saint Petersburg State Medical University
Russian Federation

Saint Petersburg



References

1. Bissinger A. Cardiac autonomic neuropathy: why should cardiologists care about that? J. Diabetes Res. 2017;2017:5374176. DOI: 10.1155/2017/5374176

2. Varley B.J., Gow M.L., Cho Y.H., Benitez-Aguirre P. et al. Higher frequency of cardiovascular autonomic neuropathy in youth with type 2 compared to type 1 diabetes: Role of cardiometabolic risk factors. Pediatr. Diabetes. 2022;23(7):1073–9. DOI: 10.1111/ pedi.13393

3. Chowdhury M., Nevitt S., Eleftheriadou A., Kanagala P. et al. Cardiac autonomic neuropathy and risk of cardiovascular disease and mortality in type 1 and type 2 diabetes: a meta-analysis. BMJ Open Diabetes Res. Care. 2021;9(2):e002480. DOI: 10.1136/bmjdrc-2021-002480

4. Pop-Busui R., Evans G.W., Gerstein H.C., Fonseca V. et al. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care. 2010;33(7):1578–84. DOI: 10.2337/dc10-0125

5. Pop-Busui R. Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care. 2010;33(2):434–41. DOI: 10.2337/dc09-1294

6. Elafros M.A., Callaghan B.C. Diabetic neuropathies. Continuum (Minneap. Minn.). 2023;29(5):1401–17. DOI: 10.1212/CON.0000000000001291

7. Bonora E., Trombetta M., Dauriz M., Travia D. et al. Chronic complications in patients with newly diagnosed type 2 diabetes: prevalence and related metabolic and clinical features: the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 9. BMJ Open Diabetes Res. Care. 2020;8(1):e001549. DOI: 10.1136/bmjdrc-2020-001549

8. Ziegler D., Buchholz S., Sohr C., Travia D. et al. Oxidative stress predicts progression of peripheral and cardiac autonomic nerve dysfunction over 6 years in diabetic patients. Acta Diabetol. 2015;52:65–72.

9. Wegeberg A.L., Okdahl T., Fløyel T., Brock C. Circulating inflammatory markers are inversely associated with heart rate variability measures in type 1 diabetes. Mediators Inflamm. 2020;2020:3590389. DOI: 10.1155/2020/3590389

10. Chiriacò M., Sacchetta L., Forotti G., Leonetti S. et al. Prognostic value of 24-hour ambulatory blood pressure patterns in diabetes: a 21-year longitudinal study. Diabetes Obes. Metab. 2022;24(11):2127–37. DOI: 10.1111/dom.14798

11. Akintunde A.A., Olamoyegun M.A., Akinlade M.O., Yusuf O.A. et al. Abnormal blood pressure dipping pattern: frequency, determinants, and correlates in diabetes mellitus patients in the Cardiovascular Health Risk Assessment in Diabetes Mellitus (CHiD) study. J. Diabetes Metab. Disord. 2023;23(1):689–97. DOI: 10.1007/s40200-023-01337-8

12. Juraschek S.P., Hu J.R., Cluett J.L., Ishak A.M. et al. Orthostatic hypotension, hypertension treatment, and cardiovascular disease: an individual participant meta-analysis [published correction appears in JAMA. 2023;330(19):1915. DOI: 10.1001/jama.2023.23332]. JAMA. 2023;330(15):1459–71. DOI: 10.1001/jama.2023.18497

13. Rocha E.A., Mehta N., Távora-Mehta M.Z.P., Roncari C.F. et al. Dysautonomia: a forgotten condition — part 1. Disautonomia: uma condição esquecida — parte 1. Arq. Bras. Cardiol. 2021;116(4): 814–35. DOI: 10.36660/abc.20200420

14. Hillis G.S., Woodward M., Rodgers A., Chow C.K. et al. Resting heart rate and the risk of death and cardiovascular complications in patients with type 2 diabetes mellitus. Diabetologia. 2012;55(5):1283–90. DOI: 10.1007/s00125-012-2471-y

15. Bissinger A., Grycewicz T., Grabowicz W., Lubinski A. The effect of diabetic autonomic neuropathy on P-wave duration, dispersion and atrial fibrillation. Arch. Med. Sci. 2011;7(5):806–12. DOI: 10.5114/aoms.2011.25555

16. Kempler P., Tesfaye S., Chaturvedi N., Stevens L.K. et al. Autonomic neuropathy is associated with increased cardiovascular risk factors: the EURODIAB IDDM Complications Study. Diabet. Med. 2002;19(11):900–9. DOI: 10.1046/j.1464-5491.2002.00821.x

17. Svane J., Pedersen-Bjergaard U., Tfelt-Hansen J. Diabetes and the risk of sudden cardiac death. Curr. Cardiol. Rep. 2020;22(10):112. DOI: 10.1007/s11886-020-01366-2

18. Ng M.Y., Zhou W., Vardhanabhuti V., Lee C.H. et al. Cardiac magnetic resonance for asymptomatic patients with type 2 diabetes and cardiovascular high risk (CATCH): a pilot study. Cardiovasc. Diabetol. 2020;19(1):42. DOI: 10.1186/s12933-020-01019-2

19. Rokicka D., Bożek A., Wróbel M., Nowowiejska-Wiewióra A. et al. Identification of silent myocardial ischemia in patients with longterm type 1 and type 2 diabetes. Int. J. Environ. Res. Public Health. 2022;19(3):1420. DOI: 10.3390/ijerph19031420

20. Kempler P. Review: autonomic neuropathy: a marker of cardiovascular risk. Br. J. Diabetes Vasc. Dis. 2003;3(2):84–90. DOI: 10.1177/14746514030030020

21. Greco C., Di Gennaro F., D’Amato C., Morganti R. et al. Validation of the Composite Autonomic Symptom Score 31 (COMPASS 31) for the assessment of symptoms of autonomic neuropathy in people with diabetes. Diabet. Med. 2017;34(6):834–8. DOI: 10.1111/dme.13310

22. Duque A., Mediano M.F.F., De Lorenzo A., Rodrigues L.F. Jr. Cardiovascular autonomic neuropathy in diabetes: pathophysiology, clinical assessment and implications. World J. Diabetes. 2021;12(6):855–67. DOI: 10.4239/wjd.v12.i6.855

23. Røikjer J., Mørch C.D., Ejskjaer N. Diabetic peripheral neuropathy: diagnosis and treatment. Curr. Drug Saf. 2021;16(1):2–16. DOI: 10.2174/1574886315666200731173113

24. Malik R.A. Corneal confocal microscopy for the assessment of diabetic neuropathy and beyond in Brazil. Microscopia confocal da córnea para a avaliação de neuropatia diabética no Brasil. Arq. Neuropsiquiatr. 2022;80(8):767–9. DOI: 10.1055/s-0042-1756169

25. Verdugo R.J., Matamala J.M., Inui K., Kakigi R. et al. Review of techniques useful for the assessment of sensory small fiber neuropathies: report from an IFCN expert group. Clin. Neurophysiol. 2022;136:13–38. DOI: 10.1016/j.clinph.2022.01.002

26. Gargiulo P., Acampa W., Asile G., Abbate V. et al. 123I-MIBG imaging in heart failure: impact of comorbidities on cardiac sympathetic innervation. Eur. J. Nucl. Med. Mol. Imaging. 2023;50(3):813–24. DOI: 10.1007/s00259-022-05941-3

27. Williams S., Raheim S.A., Khan M.I., Rubab U. et al. Cardiac autonomic neuropathy in type 1 and 2 diabetes: epidemiology, pathophysiology, and management. Clin. Ther. 2022;44(10):1394–416. DOI: 10.1016/j.clinthera.2022.09.002

28. Picard M., Tauveron I., Magdasy S., Benichou T. et al. Effect of exercise training on heart rate variability in type 2 diabetes mellitus patients: a systematic review and meta-analysis. PLoS One. 2021;16(5):e0251863. DOI: 10.1371/journal.pone.0251863

29. Sardu C., Massimo Massetti M., Rambaldi P., Gatta G. et al. SGLT2inhibitors reduce the cardiac autonomic neuropathy dysfunction and vaso-vagal syncope recurrence in patients with type 2 diabetes mellitus: the SCAN study. Metabolism. 2022;137:155243. DOI: 10.1016/j.metabol.2022.155243

30. Oka K., Masuda T., Ohara K., Miura M. et al. Fluid homeostatic action of dapagliflozin in patients with chronic kidney disease: the DAPA-BODY Trial. Front. Med. (Lausanne). 2023;10:1287066. DOI: 10.3389/fmed.2023.1287066

31. Heusser K., Tank J., Diedrich A., Fischer A. et al. Randomized trial comparing SGLT2 inhibition and hydrochlorothiazide on sympathetic traffic in type 2 diabetes. Kidney Int. Rep. 2023;8(11):2254–64. DOI: 10.1016/j.ekir.2023.08.036

32. García-Casares N., González-González G., de la Cruz-Cosme C., Garzón-Maldonado F.J. et al. Effects of GLP-1 receptor agonists on neurological complications of diabetes. Rev. Endocr. Metab. Disord. 2023;24(4):655–72. DOI: 10.1007/s11154-023-09807-3


Review

For citations:


Semikova G.V., Khalimov Yu.Sh., Lisker A.V., Polyakova E.A., Volkova A.R. Diabetic Cardiovascular Autonomic Neuropathy: Diagnosis and Treatment. Title. 2024;23(8):68-74. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-8-68-74

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)