The Effect of Age on the Expression of Ceramide-Metabolizing Enzymes in the Adipose Tissue of Patients with Coronary Artery Disease
https://doi.org/10.31550/1727-2378-2024-23-8-15-22
Abstract
Aim. To identify the features of gene expression of de novo synthesis enzymes and ceramide (Cer) degradation enzymes in fat depots of various localization in patients with cardiovascular diseases, depending on age.
Design. A single-center prospective clinical study.
Materials and methods. 60 patients with coronary artery disease (CAD) were examined. Biopsies of subcutaneous (SAT), epicardial (EAT), and perivascular adipose tissue (PVAT) were obtained during coronary bypass surgery. Gene expression of de novo Cer synthesis enzymes (C1 and C2 subunits of serine palmitoyltransferase — SPTLC1, SPTLC2; ceramide synthase 1–6 — CERS1–6; dihydroceramide desaturase — DEGS1) and degradation of Cer (acid ceramidase — ASAH1, sphingomyelin synthase 1 and 2 — SGMS1 and SGMS2,) were evaluated using quantitative polymerase chain reaction.
Results. The expression of Cer de novo synthesis enzyme genes is maximal in the ventricular tract of persons 75 years and older, with a high level of CERS5 and CERS6 (producing Cer14:0 and Cer16:0) in EAT — in persons 60–74 years old. The highest expression of the CERS2 gene (synthesizing Cer 20:0, 22:0, 24:0, 24:1, 26:0) in EAT, it was observed in the group of people aged 60–74 years, in PVAT — 75 years and older. Increased expression of the ASAH1 gene (degradation of Cer to sphingosine and free fatty acids) was detected in patients 75 years and older, SGMS1 and SGMS2 genes (conversion of Cer to sphingomyelin) — in persons 60–74 years of age in all AT. These results indicate the modulation of synthesis and accumulation of Cer in the AT ventricular localization with age.
Conclusion. The AT of patients with coronary heart disease differed in the level of expression of de novo synthesis enzyme genes and Cer degradation depending on age. It is likely that the AT ventricular localization undergoes deeper age-related remodeling, which can lead to the accumulation of Cer in the EAT and PVAT.
Keywords
About the Authors
E. V. BelikRussian Federation
Kemerovo
S. E. Dolmatova
Russian Federation
Kemerovo
Yu. A. Dyleva
Russian Federation
Kemerovo
E. G. Uchasova
Russian Federation
Kemerovo
E. E. Gorbatovskaya
Russian Federation
Kemerovo
O. V. Gruzdeva
Russian Federation
Kemerovo
References
1. Ou M.Y., Zhang H., Tan P.C., Zhou S.B. et al. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 2022;13(4):300. DOI: 10.1038/s41419-022-04752-6
2. Cho Y.K., Lee S., Lee J., Doh J. et al. Lipid remodeling of adipose tissue in metabolic health and disease. Exp. Mol. Med. 2023;55(9): 1955–73. DOI: 10.1038/s12276-023-01071-4
3. Poss A.M., Summers S.A. Too much of a good thing? An evolutionary theory to explain the role of ceramides in nafld. Front. Endocrinol. 2020;11:505. DOI: 10.3389/fendo.2020.00505
4. Li S., Kim H.E. Implications of sphingolipids on aging and agerelated diseases. Front. Aging. 2022;2:797320. DOI: 10.3389/fragi.2021.797320
5. Brel N.K., Gruzdeva O.V., Kokov A.N., Masenko V.L. et al. Relationship of coronary calcinosis and local fat deposts in patients with coronary artery disease. Complex Issues of Cardiovascular Diseases. 2022;11(3):51–63. (in Russian). DOI: 10.17802/2306-1278-2022-11-3-51-63
6. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 2022;19(9):593–606. DOI: 10.1038/s41569-022-00679-9
7. Chaurasia B., Tippetts T.S., Monibas R.M., Liu J. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365(6451):386–92. DOI: 10.1126/science.aav3722
8. Gruzdeva O.V., Dyleva Yu.A., Belik E.V., Uchasova E.G. et al. Comparative evaluation of the expression of enzymes of the ceramide de novo synthesis pathway in cardiac adipose tissue and blood vessels of cardiovascular patients. Russian Journal of Cardiology. 2022;27(12):32–40. (in Russian). DOI: 10.15829/1560-4071-2022-5281
9. Hadas Y., Vincek A.S., Youssef E., Żak M.M. et al. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction. Circulation. 2020;141(11):916–30. DOI: 10.1161/CIRCULATIONAHA.119.041882
10. Yu Z., Peng Q., Huang Y. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin. Sci. (Lond.). 2019;133(6):763–76. DOI: 10.1042/CS20180911
11. Carrard J., Gallart-Ayala H., Weber N., Colledge F. et al. How ceramides orchestrate cardiometabolic health-an ode to physically active living. Metabolites. 2021;11(10):675. DOI: 10.3390/metabo11100675
12. Kim K.I. Risk stratification of cardiovascular disease according to age groups in new prevention guidelines: a review. J. Lipid Atheroscler. 2023;12(2):96–105. DOI: 10.12997/jla.2023.12.2.96
13. Gruzdeva O., Dyleva Y., Belik E., Uchasova E.G. et al. Expression of ceramide-metabolizing enzymes in the heart adipose tissue of cardiovascular disease patients. Int. J. Mol. Sci. 2023;24(11):9494. DOI: 10.3390/ijms24119494
14. Rodgers J.L., Jones J., Bolleddu S.I., Vanthenapalli S. et al. Cardiovascular risks associated with gender and aging. J. Cardiovasc. Dev. Dis. 2019;6(2):19. DOI: 10.3390/jcdd6020019
15. Pagan L.U., Gomes M.J., Gatto M., Mota G.A.F. et al. The role of oxidative stress in the aging heart. Antioxidants (Basel). 2022;11(2):336. DOI: 10.3390/antiox11020336
16. Rodríguez-Calvo R., Serrano L., Barroso E., Coll T. et al. Peroxisome proliferator-activated receptor alpha down-regulation is associated with enhanced ceramide levels in age-associated cardiac hypertrophy. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62(12): 1326–36. DOI: 10.1093/gerona/62.12.1326
17. Hilvo M., Meikle P.J., Pedersen E.R., Tell G.S. et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 2019;41(3):371–80. DOI: 10.1093/eurheartj/ehz387
18. Li Y., Talbot C.L., Chaurasia B. Ceramides in adipose tissue. Front. Endocrinol. 2020;11:407. DOI: 10.3389/fendo.2020.00407
19. Stiban J., Tidhar R., Futerman A.H. Ceramide synthases: roles in cell physiology and signaling. Adv. Exp. Med. Biol. 2010;688:60–71. DOI: 10.1007/978-1-4419-6741-1_4
20. Ho Q.W.C., Zheng X., Ali Y. Ceramide acyl chain length and its relevance to intracellular lipid regulation. Int. J. Mol. Sci. 2022;23(17):9697. DOI: 10.3390/ijms23179697
21. Tidhar R., Zelnik I.D., Volpert G., Ben-Dor S. et al. Eleven residues determine the acyl chain specificity of ceramide synthases. J. Biol. Chem. 2018;293(25):9912–21. DOI: 10.1074/jbc.RA118.001936
22. Kim G.T., Devi S., Sharma A., Cho K.H. et al. Upregulation of the serine palmitoyltransferase subunit SPTLC2 by endoplasmic reticulum stress inhibits the hepatic insulin response. Exp. Mol. Med. 2022;54(5):573–84. DOI: 10.1038/s12276-022-00766-4
23. Błachnio-Zabielska A.U., Baranowski M., Hirnle T., Zabielski P. et al. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance. Lipids. 2012;47(12):1131–41. DOI: 10.1007/s11745-012-3722-x
24. Mahabadi A.A., Berg M.H., Lehmann N., Kälsch H. et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: The Heinz Nixdorf Recall Study. J. Am. Coll. Cardiol. 2013;61(13):1388–95. DOI: 10.1016/j.jacc.2012.11.062
25. Hammerschmidt P., Brüning J.C. Contribution of specific ceramides to obesity-associated metabolic diseases. Cell. Mol. Life Sci. 2022;79(8):395. DOI: 10.1007/s00018-022-04401-3
26. Gill J.M., Sattar N. Ceramides a new player in the inflammationinsulin resistance paradigm? Diabetologia. 2009;52(12):2475–7. DOI: 10.1007/s00125-009-1546-x
27. Parveen F., Bender D., Law S.H., Mishra V.K. et al. Role of ceramidases in sphingolipid metabolism and human diseases. Cells. 2019;8(12):1573. DOI: 10.3390/cells8121573
28. Gault C.R., Obeid L.M., Hannun Y.A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 2010;688:1–23. DOI: 10.1007/978-1-4419-6741-1_1
29. Choi R.H., Tatum S.M., Symons J.D., Summers S.A. et al. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat. Rev. Cardiol. 2021;18(10):701–11. DOI: 10.1038/s41569-021-00536-1
30. Zietzer A., Düsing P., Reese L., Nickenig G. et al. Ceramide metabolism in cardiovascular disease: a network with high therapeutic potential. Arterioscler. Thromb. Vasc. Biol. 2022;42(10):1220–8. DOI: 10.1161/ATVBAHA.122.318048
31. Monette J.S., Gómez L.A., Moreau R.F., Dunn K.C. et al. (R)-αLipoic acid treatment restores ceramide balance in aging rat cardiac mitochondria. Pharmacol. Res. 2011;63(1):23–9. DOI: 10.1016/j.phrs.2010.09.007
32. Li Z., Chiang Y.P., He M., Zhang K. et al. Effect of liver total sphingomyelin synthase deficiency on plasma lipid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021;1866(5):158898. DOI: 10.1016/j.bbalip.2021.158898
Review
For citations:
Belik E.V., Dolmatova S.E., Dyleva Yu.A., Uchasova E.G., Gorbatovskaya E.E., Gruzdeva O.V. The Effect of Age on the Expression of Ceramide-Metabolizing Enzymes in the Adipose Tissue of Patients with Coronary Artery Disease. Title. 2024;23(8):15-22. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-8-15-22