Preview

Title

Advanced search

Endometrium Receptivity in Patients with Repeated Implant Failures

https://doi.org/10.31550/1727-2378-2022-21-1-27-33

Abstract

Study Objective: To broaden the understanding of the pathogenesis of impaired receptivity in patients with repeated implant failures (RIF) in in vitro fertilisation programs.

Study Design: Open perspective comparative study.

Materials and Methods. 57 women aged 27 to 42 years old (mean age: 36 ± 6.2 years old) with clinically verified RIF. A morphological control group included 30 fertile women. The subject of the study was endometrium biopsy material obtained on day 5–7 of menstruation, following the peak blood concentration of luteinizing hormone (implantation window).

Study Results. During the implantation window, patients with RIF have statistically significant (р < 0.05) changes: 1.5- and 1.4-fold increase in gland and stromal expression of estrogen α receptors, respectively; 2.3-fold increase in expression of progesterone A and B receptors with simultaneous reduction in stromal expression by 1.6 times; focal reduction in MUC1 expression in apical surface of endometrium; 1.3-fold increase in pinopods density in apical surface of endometrium and 2.3-fold increase in stromal expression of CD56+ NK-cells; 2-fold reduction in CD4+ cell expression, and 2.2-fold increase in CD8+ expression vs morphological controls. During the implantation window, von Willebrand factor and CD34+ levels in endometrial stroma did not demonstrate statistically significant differences when expressed in blood-vessel endothelium.

Conclusion. Pathogenesis of impaired receptivity in patients with RIF can be explained with impaired expression of sex hormone receptors in stroma and glandular component and reduced MUC1 expression, increased density and reduced amount of mature and maturating pinopods in apical surface of endometrium. An increased number of expressed CD56+ NK-cells during the implantation window in patients in both groups (in patients with RIF, CD56+ expression is significantly higher) in combination with the found imbalance between Т-lymphocytes can be a cause of the immunological component of impaired implantation pathogenesis.

About the Authors

V. E. Radzinsky
Peoples’ Friendship University of Russia (a Federal Government Autonomous Educational Institution of Higher Education)
Russian Federation

6 Miklouho-Maclay Str., Moscow, 117198



L. M. Mikhaleva
A.P. Avtsyn Research Institute of Human Morphology
Russian Federation

3 Tsyurupa Str., Moscow, 117418 



M. R. Orazov
Peoples’ Friendship University of Russia (a Federal Government Autonomous Educational Institution of Higher Education)
Russian Federation

6 Miklouho-Maclay Str., Moscow, 117198



E. S. Silantieva
Mother and Child
Russian Federation

2 Mozhayskoye Shosse, Moscow, 143081



D. P. Kamilova
Mother and Child
Russian Federation

2 Mozhayskoye Shosse, Moscow, 143081



K. Yu. Midiber
Peoples’ Friendship University of Russia (a Federal Government Autonomous Educational Institution of Higher Education) ; A.P. Avtsyn Research Institute of Human Morphology
Russian Federation

6 Miklouho-Maclay Str., Moscow, 117198



R. E. Orekhov
Peoples’ Friendship University of Russia (a Federal Government Autonomous Educational Institution of Higher Education)
Russian Federation

6 Miklouho-Maclay Str., Moscow, 117198

3 Tsyurupa Str., Moscow, 117418 



References

1. Sun Y., Zhang Y., Ma X. et al. Determining diagnostic criteria of unexplained recurrent implantation failure: a ret-rospective study of two vs. three or more implantation failure. Front. Endocrinol. 2021; 12: 619437. DOI: 10.3389/fendo.2021.619437

2. Busnelli A., Reschini M., Cardellicchio L. et al. How common is real repeated implantation failure? An indirect estimate of the prevalence. Reprod. Biomed. Online. 2020; 40(1): 91–7. DOI: 10.1016/j.rbmo.2019.10.014

3. Bos-Mikich A., Ferreira M.O., de Oliveira R. et al. Platelet-rich plasma or blood-derived products to improve endometrial receptivity? J. Assist. Reprod. Genet. 2019; 36(4): 613–20. DOI: 10.1007/s10815-018-1386-z

4. Liu W., Tal R., Chao H. et al. Effect of local endometrial injury in proliferative vs. luteal phase on IVF outcomes in unselected subfertile women undergoing in vitro fertilization. Reprod. Biol. Endocrinol. 2017; 15(1): 75. DOI: 10.1186/s12958-017-0296-8

5. Simón C., Martín J.C., Pellicer A. Paracrine regulators of implantation. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 2000; 14(5): 815– 26. DOI: 10.1053/beog.2000.0121

6. Orazov M.R., Orekhov R.E., Kamilova D.P. et al. Secrets of pathogenesis in repeated implantation failure. Difficult Patient. 2020; 18(4): 43–8. (in Russian). DOI: 10.24411/2074-1995-2020-10030

7. Dain L., Ojha K., Bider D. et al. Effect of local endometrial injury on pregnancy outcomes in ovum donation cycles. Fertil. Steril. 2014; 102(4): 1048–54. DOI: 10.1016/j.fertnstert.2014.06.044

8. Bastu E., Demiral I., Gunel T. et al. Potential marker pathways in the endometrium that may cause recurrent implantation failure. Reprod. Sci. 2019; 26(7): 879–90. DOI: 10.1177/1933719118792104

9. Dhaenens L., Lierman S., De Clerck L. et al. Endometrial stromal cell proteome mapping in repeated implantation failure and recurrent pregnancy loss cases and fertile women. Reprod. Biomed. Online. 2019; 38(3): 442–54. DOI: 10.1016/j.rbmo.2018.11.022

10. Aylamazyan E.K., Tolibova G.Kh., Tral T.G. et al. New approaches to the estimation of endometrial dysfunctionю Journal of Obstetrics and Women's Diseases. 2017; 66(3): 8–15. (in Russian). DOI: 10.17816/JOWD6638-15

11. Craciunas L., Gallos I., Chu J. et al. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. Hum. Reprod. Update. 2019; 25(2): 202–23. DOI: 10.1093/humupd/dmy044

12. Ramathal C.Y., Bagchi I.C., Taylor R.N. et al. Endometrial decidualization: of mice and men. Semin. Reprod. Med. 2010; 28(1): 17–26. DOI: 10.1055/s-0029-1242989

13. Critchley H.O., Saunders P.T. Hormone receptor dynamics in a receptive human endometrium. Reprod. Sci. 2009; 16(2): 191–9. DOI: 10.1177/1933719108331121

14. Namiki T., Ito J., Kashiwazaki N. Molecular mechanisms of embryonic implantation in mammals: Lessons from the gene manipulation of mice. Reprod. Med. Biol. 2018; 17(4): 331–42. DOI: 10.1002/rmb2.12103

15. Lydon J.P., DeMayo F.J., Funk C.R. et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes. Dev. 1995; 9(18): 2266–78. DOI: 10.1101/gad.9.18.2266

16. Gellersen B., Brosens J.J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 2014; 35(6): 851–905. DOI: 10.1210/er.2014-1045

17. Garcia E., Bouchard P., De Brux J. et al. Use of immunocytochemistry of progesterone and estrogen receptors for endometrial dating. J. Clin. Endocrinol. Metab. 1988; 67(1): 80–7. DOI: 10.1210/jcem-67-1-80

18. Lee D.K., Kurihara I., Jeong J.W. et al. Suppression of ERalpha activity by COUP-TFII is essential for successful implantation and decidualization. Mol. Endocrinol. 2010; 24(5): 930–40. DOI: 10.1210/me.2009-0531

19. Bastu E., Mutlu M.F., Yasa C. et al. Role of mucin 1 and glycodelin A in recurrent implantation failure. Fertil. Steril. 2015; 103(4): 1059–64.e2. DOI: 10.1016/j.fertnstert.2015.01.025

20. Wu F., Chen X., Liu Y. et al. Decreased MUC1 in endometrium is an independent receptivity marker in recurrent implantation failure during implantation window. Reprod. Biol. Endocrinol. 2018; 16(1): 60. DOI: 10.1186/s12958-018-0379-1

21. Hey N.A., Li T.C., Devine P.L. et al. MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients. Hum. Reprod. 1995; 10(10): 2655–62. DOI: 10.1093/oxfordjournals.humrep.a135762

22. Jin X.Y., Zhao L.J. Luo D.H. et al. Pinopode score around the time of implantation is predictive of successful implantation following frozen embryo transfer in hormone replacement cycles. Hum. Reprod. 2017; 32(12): 2394–403. DOI: 10.1093/humrep/dex312

23. Qiong Z., Jie H., Yonggang W. et al. Clinical validation of pinopode as a marker of endometrial receptivity: a randomized controlled trial. Fertil. Steril. 2017; 108(3): 513–17.e2. DOI: 10.1016/j. fertnstert.2017.07.006

24. Moffett A., Shreeve N. First do no harm: uterine natural killer (NK) cells in assisted reproduction. Hum. Reprod. 2015; 30(7): 1519–25. DOI: 10.1093/humrep/dev098

25. Kwak-Kim J., Gilman-Sachs A. Clinical implication of natural killer cells and reproduction. Am. J. Reprod. Immunol. 2008; 59(5): 388– 400. DOI: 10.1111/j.1600-0897.2008.00596.x

26. Di Renzo G.C., Giardina I., Clerici G. et al. Progesterone in normal and pathological pregnancy. Horm. Mol. Biol. Clin. Investig. 2016; 27(1): 35–48. DOI: 10.1515/hmbci-2016-0038

27. Szekeres-Bartho J. The role of progesterone in feto-maternal immunological cross talk. Med. Princ. Pract. 2018; 27(4): 301–7. DOI: 10.1159/000491576


Review

For citations:


Radzinsky V.E., Mikhaleva L.M., Orazov M.R., Silantieva E.S., Kamilova D.P., Midiber K.Yu., Orekhov R.E. Endometrium Receptivity in Patients with Repeated Implant Failures. Title. 2022;21(1):27-33. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-1-27-33

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)