Preview

Title

Advanced search

Prediabetes: Modern Approaches to Diagnosis and Treatment

https://doi.org/10.31550/1727-2378-2024-23-4-32-37

Abstract

Aim. To describe modern approaches to the diagnosis and treatment of prediabetes.

Key points. Taking into account the growing number of patients with prediabetes, timely diagnosis of this condition is necessary. In case of confirmation of carbohydrate metabolism disorders, active treatment is extremely important already at the stage of prediabetes, the effect on various links of pathogenesis. The management of such patients implies, first of all, an active lifestyle change and a decision on the appointment of drug therapy. When choosing a treatment option for prediabetes, it is important to take into account the type of carbohydrate metabolism disorder. With impaired fasting glycemia, metformin is a more pathogenetically justified option, and with impaired glucose tolerance – Subetta.

Conclusion. The substrate, normalizing the indicators of postprandial glycemia and the level of glycated hemoglobin in patients with prediabetes (impaired glucose tolerance), may contribute to reducing cardiovascular risks. However, there are currently no such studies, and therefore it seems relevant to carry out work evaluating the effect of therapy with this drug on the risk of cardiovascular events in patients with prediabetes.

About the Authors

S. V. Dora
Academician I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

Dora, S.V.

6-8 Lev Tolstoy Str., Saint Petersburg, 197022



A. R. Volkova
Academician I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

Volkova, А.R.

6-8 Lev Tolstoy Str., Saint Petersburg, 197022



References

1. Dedov I.I., Shestakova M.V., Mayorov A.Yu., eds. Standards of specialized diabetes care. 11 ed. М.; 2023. 236 p. (in Russian). DOI: 10.14341/DM13042

2. Heianza Y., Arase Y., Fujihara K., Tsuji H. et al. Screening for prediabetes to predict future diabetes using various cut-off points for HbA(1c) and impaired fasting glucose: the Toranomon Hospital Health Management Center Study 4 (TOPICS 4). Diabet. Med. 2012;29(9):e279–85. DOI: 10.1111/j.1464-5491.2012.03686.x

3. Shestakova M.V., Vikulova O.K., Zheleznyakova A.V., Dedov I.I. et al. Diabetes mellitus type 2: National Russian guidelines vs real clinical practice. Therapeutic Archive. 2023;95(10):833–8. (in Russian). DOI: 10.26442/00403660.2023.10.202424

4. Dedov I.I., Shestakova M.V., Galstyan G.R. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes Mellitus. 2016;19(2):104–12. (in Russian). DOI: 10.14341/DM2004116-17

5. Garber A.J., Handelsman Y., Einhorn D., Bergman D.A. et al. Diagnosis and management of prediabetes in the continuum of hyperglycemia: when do the risks of diabetes begin? A consensus statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists. Endocr. Pract. 2008;14(7):933–46. DOI: 10.4158/EP.14.7.933

6. Drapkina O.M., Drozdova L.Yu., Shepel R.N., Rakovskaya Yu.S. et al. Analysis of prediabetes prevalence and realworld practice in prescribing drug therapy to prediabetic patients. Russian Journal of Preventive Medicine. 2022;25(12):96–105. (in Russian). DOI: 10.17116/profmed20222512196

7. Ovsyannikova A.K., Zubareva D.Yu. Features of the course of type 2 diabetes mellitus in young people. Medical Council. 2022;10:57–61. (in Russian). DOI: 10.21518/2079-701X-2022-16-10-57-61

8. Magliano D.J., Sacre J.W., Harding J.L., Gregg E.W. et al. Young-onset type 2 diabetes mellitus — implications for morbidity and mortality. Nat. Rev. Endocrinol. 2020;16(6):321–31. DOI: 10.1038/s41574-020-0334-z

9. Biryukova E.V., Shinkin M.V., Starshinova A.A. Prediabetes is an urgent medical and social problem of our time. Effective Pharmacotherapy. 2023;19(12):42–50. (in Russian). DOI 10.33978/2307-3586-2023-19-12-42-50

10. Kanat M., Mari A., Norton L., Winnier D. et al. Distinct B-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 2012;61(2):447–53. DOI: 10.2337/db11-0995

11. Morgunova T.B., Glinkina I.V., Fadeev V.V. Prediabetes: challenges and opportunities. Medical Council. 2021;12:220–7. DOI: 10.21518/2079-701X-2021-12-220-227

12. Wang T., Lu J., Su Q., Chen Y. et al. Ideal cardiovascular health metrics and major cardiovascular events in patients with prediabetes and diabetes. JAMA Cardiol. 2019;4(9):874–83. DOI: 10.1001/jamacardio.2019.2499

13. Lu J., He J., Li M., Tang X. et al. Predictive value of fasting glucose, postload glucose, and hemoglobin A1c on risk of diabetes and complications in Chinese adults. Diabetes Care. 2019;42(8):1539– 48. DOI: 10.2337/dc18-1390

14. Hubbard D., Colantonio L.D., Tanner R.M., Carson A.P. et al. Prediabetes and risk for cardiovascular disease by hypertension status in black adults: the Jackson heart study. Diabetes Care. 2019;42(12):2322–9. DOI: 10.2337/dc19-1074

15. Tang K., Cores O., Matsushitah J., Sharrett A.R. et al. Mortality implications of prediabetes and diabetes in older adults. Diabetes Care. 2020;43(2):382–8. DOI: 10.2337/dc19-1221

16. Welsh C., Welsh P., Celis-Morales C.A., Mark P.B. et al. Glycated hemoglobin, prediabetes, and the links to cardiovascular disease: data from UK Biobank. Diabetes Care. 2020;43(2):440–5. DOI: 10.2337/dc19-1683

17. Cai X., Zhang Y., Li M., Wu J.H. et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ. 2020;370:m2297. DOI: 10.1136/bmj.m2297

18. DECODE Study Group, on behalf of the European Diabetes Epidemiology Study Group. Will new diagnostic criteria for diabetes mellitus change phenotype of patients with diabetes? Reanalysis of European epidemiological data. BMJ. 1998;317(7155):371–5. DOI: 10.1136/bmj.317.7155.371

19. Takao T., Suka M., Yanagisawa H., Iwamoto Y. Impact of postprandial hyperglycemia at clinic visits on the incidence of cardiovascular events and all-cause mortality in patients with type 2 diabetes. J. Diabetes Investig. 2017;8(4):600–8. DOI: 10.1111/jdi.12610

20. Lindström J., Peltonen M., Eriksson J.G., Ilanne-Parikka P. et al. Improved lifestyle and decreased diabetes risk over 13 years: longterm follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia. 2013;56:284–93. DOI: 10.1007/s00125-012-2752-5

21. Mkrtumyan A.M., Yegshatyan L.V. Subetta — a new activator of the insulin receptor. Effective Pharmacotherapy. 2019;15(12):12–7. (in Russian). DOI: 10.33978/2307-3586-2019-15-12-12-17

22. Ametov A.S., Demidova T.Yu., Mkrtumyan A.M., Dudinskaya E.N. et al. Challenge in modern endocrinology: search for combined treatment on the back of insulin resistance (lecture). Endocrinology: News, Opinions, Training. 2020;9(1):60–9. (in Russian). DOI: 10.33029/2304-9529-2020-9-1-60-69

23. Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study. Diabetes Care. 2012;35(4):731–7. DOI: 10.2337/dc11-1299

24. Knowler W.C., Barret-Connor E., Fowler S.E., Hamman R.F. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002;346(6):393–403. DOI: 10.1056/NEJMoa012512

25. Nicoll J., Gorbunov E.A., Tarasov S.A., Epstein O.I. Subetta treatment increases adiponectin secretion by mature human adipocytes in vitro. Int. J. Endocrinol. 2013;2013:925874. DOI: 10.1155/2013/925874

26. Ouedraogo R., Wu X., Xu S.Q., Fuchsel L. et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006;55(6):1840–6. DOI: 10.2337/db05-1174

27. Goldstein B.J., Scalia R.G., Ma X.L. Protective vascular and myocardial effects of adiponectin. Nat. Clin. Pract. Cardiovasc. Med. 2009;6(1):27–35. DOI: 10.1038/ncpcardio1398

28. Tao L., Gao E., Jiao X., Yuan Y. et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves oxidative/nitrative stress. Circulation. 2007;115(11):1408–16. DOI: 10.1161/CIRCULATIONAHA.106.666941

29. Gorbunov E.A., Nicoll J., Kachaeva E.V., Tarasov S.A. et al. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin. Nutr. Diabetes. 2015;5(7):e169. DOI: 10.1038/nutd.2015.20

30. Gorbunov E.A., Nicoll J., Myslivets A.A., Kachaeva E.V. et al. Subetta enhances sensitivity of human muscle cells to insulin. Bull. Exp. Biol. Med. 2015;159(4):463–5. DOI: 10.1007/s10517-015-2992-8

31. Mkrtumyan A., Ametov A., Demidova T., Volkova A. et al. A new approach to overcome insulin resistance in patients with impaired glucose tolerance: the results of a multicenter, double-blind, placebo-controlled, randomized clinical trial of efficacy and safety of Subetta. J. Clin. Med. 2022;11(5):1390. DOI: 10.3390/jcm11051390

32. Shinkin M.V., Zvenigorodskaya L.A., Mkrtumyan A.M. Laser Doppler flowmetry and fluorescence spectroscopy use to assess the condition of the microcirculatory bed and tissue metabolism in patients with type 2 diabetes mellitus on the background of Subetta therapy. Effective Pharmacotherapy. 2020;16(12):8–14. (in Russian). DOI: 10.33978/2307-3586-2020-16-12-8-14

33. Mkrtumyan A.M., Vorobyev S.V., Volkova A.R., Vorokhobina N.V. Effects of Subetta on glycemic control in patients with type 2 diabetes mellitus: results of a multicenter, double-blind, placebo-controlled, randomized clinical study. Farmateka. 2020;27(12):38–48. (in Russian). DOI: 10.18565/pharmateca.2020.12.38-48

34. Madsen K.S., Chi Y., Metzendorf M.I., Richter B. et al. Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2019;12(12):CD008558. DOI: 10.1002/14651858.CD008558.pub2

35. Abdul-Ghani M.A., Lyssenko V., Tuomi T., DeFronzo R.A. et al. Fasting versus postload plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia Study. Diabetes Care. 2009;32(2):281–6. DOI: 10.2337/dc08-1264

36. Khetan A.K., Rajagopalan S. Prediabetes. Can. J. Cardiol. 2018;34(5):615–23. DOI: 10.1016/j.cjca.2017.12.030

37. Brannick B., Dagogo-Jack S. Prediabetes and cardiovascular disease: pathophysiology and interventions for prevention and risk reduction. Endocrinol. Metab. Clin. North Am. 2018;47(1):33–50. DOI: 10.1016/j.ecl.2017.10.001

38. Perreault L., Temprosa M., Mather K.J., Horton E. et al. Regression from prediabetes to normal glucose regulation is associated with reduction in cardiovascular risk: results from the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2014;37(9):2622–31. DOI: 10.2337/dc14-0656

39. Yakubovich N., Gerstein H.C. Is regression to normoglycaemia clinically important? Lancet. 2012;379(9833):2216–18. DOI: 10.1016/S0140-6736(12)60828-9

40. Perreault L., Pan Q., Schroeder E.B., Kalyani R.R. et al. Regression from prediabetes to normal glucose regulation and prevalence of microvascular disease in the diabetes Prevention Program Outcomes Study (DPPOS). Diabetes Care. 2019;42(9):1809–15. DOI: 10.2337/dc19-0244


Review

For citations:


Dora S.V., Volkova A.R. Prediabetes: Modern Approaches to Diagnosis and Treatment. Title. 2024;23(4):32-37. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-4-32-37

Views: 62


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)