Omentin-1 and Coronary Heart Disease
https://doi.org/10.31550/1727-2378-2024-23-4-20-26
Abstract
Aim. The purpose of the review is to summarize the results of studies on the relationship between the level of omentin-1 and coronary artery disease (CAD).
Key points. Adipose tissue is currently considered as an endocrine organ synthesizing biologically active factors known as adipocytokines, which may be involved in the pathogenesis of obesity-related metabolic and cardiovascular diseases, in particular, CAD. Omentin-1 is an adipocytokine that is predominantly secreted by visceral adipose tissue and plays an important role in the development of chronic inflammatory diseases, including CAD. Two isoforms of omentin are known: omentin-1 and omentin-2. Omentin-1 is the main circulating form of omentin. Its blood level in healthy people, according to different authors, varies from 1.61 to 815.3 ng/ml. A number of studies have found that the concentration of omentin-1 in the blood of women is higher than that of men, which may be due to sexual dimorphism of adipose tissue. The results of the studies indicate that the levels of omentin-1 circulating in the blood are associated with various metabolic risk factors. The review describes the main molecular mechanisms that determine these effects of omentin-1. A decrease in serum omentin-1 levels can be considered as an independent predictor of CAD and correlates with the severity and prognosis of this disease. A number of studies have established an association between the carriage of various variants of the omentin-1 (ITLN1) gene, CAD and obesity. The article analyzes the available data on the role of the level of omentin-1 in CAD, determined not only in the blood, but also in subcutaneous and visceral adipose tissue. The possible prospects for the use of various molecules capable of increasing the level of omentin-1 in the blood are analyzed.
Conclusion. A decrease in the level of omentin-1 may be an independent predictor of CAD and is associated with the severity and progression of the disease. It is likely that omentin-1 can act as an alternative diagnostic tool to ensure optimal management of patients with CAD. Studies of the effect of omentin-1 on the prognosis in patients with various forms of CAD are largely ambiguous and therefore further, more comprehensive studies are needed.
About the Authors
D. A. KolodinaRussian Federation
Kolodina, D.A.
6-8 Lev Tolstoy Str., St. Petersburg, 197022
A. S. Draganova
Russian Federation
Draganova, A.S.
2 Akkuratova Str., St. Petersburg, 197341
O. D. Belyaeva
Russian Federation
Belyaeva, O.D.
6-8 Lev Tolstoy Str., St. Petersburg, 197022
O. A. Berkovich
Russian Federation
Berkovich, O.A.
6-8 Lev Tolstoy Str., St. Petersburg, 197022
References
1. Boytsov S.A., Drapkina O.M., Shlyakhto E.V. et al. Epidemiology of Cardiovascular Diseases and their Risk Factors in Regions of Russian Federation (ESSE-RF) study. Ten years later. Cardiovascular Therapy and Prevention. 2021;20(5):3007. (in Russian). DOI: 10.15829/1728-8800-2021-3007
2. Komajda M., Cosentino F., Ferrari R. et al. CICD Investigators Group. The ESC-EORP Chronic Ischaemic Cardiovascular Disease Long Term (CICD LT) registry. Eur. Heart J. Qual. Care Clin. Outcomes. 2021;7(1):28–33. DOI: 10.1093/ehjqcco/qcz057
3. Kontsevaya A.V., Shalnova S.A., Drapkina O.M. ESSE-RF study: epidemiology and public health promotion. Cardiovascular Therapy and Prevention. 2021;20(5):2987. (in Russian). DOI: 10.15829/1728-88002021-2987
4. Miklishanskaya S.V., Mazur N.A. Types of obesity and their impact on long-term outcomes in patients with cardiovascular disease. Obesity and metabolism. 2021;18(2):125–131. (in Russian). DOI: 10.14341/omet12367
5. Chumakova G.A., Pokutnev A.P., Veselovskaya N.G. Specifics of myocardial infarction in obesity. Russian Journal of Cardiology. 2017;(4):75–80. (in Russian). DOI: 10.15829/1560-4071-2017-4-75-80
6. Draganova A.S., Polyakova E.A., Kolodina D.A. et al. Concentration omentin-1 in the serum of patients with coronary heart disease. Translational Medicine. 2019;6(6):5–13. (in Russian). DOI: 10.18705/2311-44952019-6-6-5-13
7. Osipova E.S., Veselovskaya N.G., Chumakova G.A., Elykomov V.A. Risk factors of coronary arteries restenosis after stenting in postmenopausal women with obesity. Russian Journal of Cardiology. 2018;(5): 34–39. (in Russian). DOI: 10.15829/1560-4071-2018-5-34-39
8. Tanaka K., Fukuda D., Sata M. Roles of epicardial adipose tissue in the pathogenesis of coronary atherosclerosis — an update on recent findings. Circ. J. 2020;85(1):2–8. DOI: 10.1253/circj.CJ-20-0935
9. Liu Z., Wang S., Wang Y. et al. Association of epicardial adipose tissue attenuation with coronary atherosclerosis in patients with a high risk of coronary artery disease. Atherosclerosis. 2019;284: 230–236. DOI: 10.1016/j.atherosclerosis.2019.01.033
10. Clemente-Suárez V.J., Redondo-Flórez L., Beltrán-Velasco A.I. et al. The role of adipokines in health and disease. Biomedicines. 2023; 11(5):1290. DOI: 10.3390/biomedicines11051290
11. Fadhil Jaafar A., Afrisham R., Fadaei R. et al. CCN3/NOV serum levels in coronary artery disease (CAD) patients and its correlation with TNF-α and IL-6. BMC Res. Notes. 2023;16(1):306. DOI: 10.1186/s13104-02306590-x
12. Garbuzova Striukova E.V., Shramko V.S., Kashtanova E.V. et al. Adipokinecytokine profile in patients with unstable atherosclerotic plaques and abdominal obesity. Int. J. Mol. Sci. 2023;24(10):8937. DOI: 10.3390/ijms24108937
13. Ali S., Alam R., Ahsan H., Khan S. Role of adipokines (omentin and visfatin) in coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2023;33(3):483–493. DOI: 10.1016/j.numecd.2022.11.023
14. Sasso F.C., Pafundi P.C., Marfella R. et al. Adiponectin and insulin resistance are related to restenosis and overall new PCI in subjects with normal glucose tolerance: the prospective AIRE Study. Cardiovasc. Diabetol. 2019;18:1–13. DOI: 10.1186/s12933-019-0826-0
15. Shioji K., Moriwaki S., Takeuchi Y. et al. Relationship of serum adiponectin level to adverse cardiovascular events in patients who undergo percutaneous coronary intervention. Circ. J. 2007;71(5): 675–680. DOI: 10.1253/circj.71.675
16. Askin L., Duman H., Ozyıldız A. et al. Association between omentin-1 and coronary artery disease: pathogenesis and clinical research. Curr. Cardiol. Rev. 2020;16(3):198–201. DOI: 10.2174/1573403X16666200511085304
17. Christodoulatos G.S., Antonakos G., Karampela I. et al. Circulating omentin-1 as a biomarker at the intersection of postmenopausal breast cancer occurrence and cardiometabolic risk: an observational cross-sectional study. Biomolecules. 2021;11(11):1609. DOI: 10.3390/biom11111609
18. Zhou Y., Zhang B., Hao C. et al. Omentin-A novel adipokine in respiratory diseases. Int. J. Mol. Sci. 2017;19(1):73. DOI: 10.3390/ijms19010073
19. Karabulut S., Afsar C.U., Karabulut M. et al. Clinical significance of serum omentin-1 levels in patients with pancreatic adenocarcinoma. BBA Clin. 2016;6:138–142. DOI: 10.1016/j.bbacli.2016.10.002
20. Kadoglou N.P.E., Lambadiari V., Gastounioti A. et al. The relationship of novel adipokines, RBP4 and omentin-1, with carotid atherosclerosis severity and vulnerability. Atherosclerosis. 2014;235(2):606–612. DOI: 10.1016/j.atherosclerosis.2014.05.957
21. Dec P., Poniewierska-Baran A., Modrzejewski A., Pawlik A. The role of omentin-1 in cancers development and progression. Cancers. 2023;15(15):3797. DOI: 10.3390/cancers15153797
22. Martínez-García M.A., Montes-Nieto R., Fernández-Durán E. et al. Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 2013;98(2):E388–E396. DOI: 10.1210/jc.2012-3414
23. Martínez-García M.Á., Moncayo S., Insenser M. еt al. Metabolic cytokines at fasting and during macronutrient challenges: influence of obesity, female androgen excess and sex. Nutrients. 2019;11(11):2566. DOI: 10.3390/nu11112566
24. Feijóo-Bandín S., Aragón-Herrera A., Moraña-Fernández S. et al. Adipokines and inflammation: focus on cardiovascular diseases. Int. J. Mol. Sci. 2020;21(20):7711. DOI: 10.3390/ijms21207711
25. Sena C.M. Omentin: a key player in glucose homeostasis, atheroprotection, and anti-inflammatory potential for cardiovascular health in obesity and diabetes. Biomedicines. 2024;12(2):284. DOI: 10.3390/biomedicines12020284
26. Wu S.S., Liang Q.H., Liu Y. еt al. Omentin-1 stimulates human osteoblast proliferation through PI3K/Akt signal pathway. Int. J. Endocrinol. 2013;2013:368970. DOI: 10.1155/2013/368970
27. Lin S., Li X., Zhang J., Zhang Y. Omentin-1: protective impact on ischemic stroke via ameliorating atherosclerosis. Clin. Chim. Acta. 2021;517: 31–40. DOI: 10.1016/j.cca.2021.02.004
28. Bai P., Abdullah F., Lodi M. et al. Association between coronary artery disease and plasma Omentin-1 levels. Cureus. 2021;13(8):e17347. DOI: 10.7759/cureus.17347
29. Miroshnikova V.V., Polyakova E.A., Pobozheva I.A. еt al. FABP4 and omentin-1 gene expression in epicardial adipose tissue from coronary artery disease patients. Genet. Mol. Biol. 2021;44(4):e20200441. DOI: 10.1590/1678-4685-GMB-2020-0441
30. Recinella L., Orlando G., Ferrante C. et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020;11:578966. DOI: 10.3389/fphys.2020.578966
31. Zhou J.P., Tong X.Y., Zhu L.P. еt al. Plasma Omentin-1 level as a predictor of good coronary collateral circulation. J. Atheroscler. Thromb. 2017;24(9):940–948. DOI: 10.5551/jat.37440
32. Bolignano D., Dounousi E., Presta P. et al. Circulating Omentin-1 levels and altered iron balance in chronic haemodialysis patients. Clin. Kidney J. 2022;15(2):303–310. DOI: 10.1093/ckj/sfab189
33. Onat A., Ademoglu E., Karadeniz Y. et al. Population-based serum omentin-1 levels: paradoxical association with cardiometabolic disorders primarily in men. Biomark. Med. 2018;12(2):141–149. DOI: 10.2217/bmm-2017-0197
34. Saely C.H., Leiherer A., Muendlein A. et al. Coronary patients with high plasma omentin are at a higher cardiovascular risk. Data Brief. 2015;6:158–161. DOI: 10.1016/j.dib.2015.11.065
35. Ozkan B., Ndumele C.E. Exploring the mechanistic link between obesity and heart failure. Curr. Diabetes Rep. 2023;23(12): 347–360. DOI: 10.1007/s11892-023-01526-y
36. Baig M., Alghalayini K.W., Gazzaz Z.J., Atta H. Association of serum Omentin-1, Chemerin, and Leptin with acute myocardial infarction and its risk factors. Pak. J. Med. Sci. 2020;36(6):1183–1188. DOI: 10.12669/pjms.36.6.2372
37. Zhu Y., Hu C., Du Y. et al. Time-dependent change in Omentin-1 level correlated with early improvement of myocardial function in patients with first anterior ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. J. Atheroscler. Thromb. 2019;26(10):856–867. DOI: 10.5551/jat.47043
38. Luo J., He Z., Li Q. et al. Adipokines in atherosclerosis: unraveling complex roles. Front. Cardiovasc. Med. 2023;10:1235953. DOI: 10.3389/fcvm.2023.1235953
39. Kravchun P.P., Kadykova O.I. The importance of adipose tissue hormones in the pathogenesis of type 2 diabetes mellitus in patients with post-infarction cardiosclerosis. Lechebnoye delo: nauchno-prakticheskiy terapevticheskiy zhurnal. 2015;(1):39–43. (in Russian).
40. Matloch Z., Kratochvílová H., Cinkajzlová A. et al. Changes in omentin levels and its mRNA expression in epicardial adipose tissue in patients undergoing elective cardiac surgery: the influence of type 2 diabetes and coronary heart disease. Physiol. Res. 2018;67(6): 881–890. DOI: 10.33549/physiolres.933909
41. Jha C.K., Mir R., Elfaki I. et al. Evaluation of the association of Omentin 1 rs2274907 A>T and rs2274908 G>A gene polymorphisms with coronary artery disease in indian population: a case control study. J. Personal. Med. 2019;9(2):30. DOI: 10.3390/jpm9020030
42. Jha C.K., Mir R., Elfaki I. et al. Reply to comment: evaluation of the association of Omentin 1 rs2274907 A>T and rs2274908 G>A gene polymorphisms with coronary artery disease in indian population: a case–control study. J. Pers. Med. 2020;10(4):194. DOI: 10.3390/jpm10040194
43. Güçlü-Geyik F., Erkan A.F., Özuynuk A.S. et al. Val109Asp polymorphism in Intelectin 1 gene is associated with coronary artery disease severity in women. Turk. Kardiyol. Dern. Ars. 2022;50(1):34–45. DOI: 10.5543/tkda.2022.21003
44. Isakova J.T., Kipen V.N., Aitbaev K.A. et al. Association of polymorphic variants of non-allelic genes ADIPOQ, MTHFR, PON1, KCNJ11, TCF7L2, ITLN1 and PPARG with clinical and laboratory parameters among obese patients from Kyrgyz Republic. Molecular medicine. 2022;20(5): 42–52. (in Russian). DOI: 10.29296/24999490-2022-05-06
45. Du Y., Ji Q., Cai L. et al. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc. Diabetol. 2016;15:90. DOI: 10.1186/s12933-016-0406-5
46. Klein C., Ninni S., Coisne A. et al. Omentin-1, epicardial fat and coronary artery disease. Atherosclerosis. 2016;255:224–225. DOI: 10.1016/j.atherosclerosis.2016.10.021
47. Fernández-Trasancos Á., Agra R.M., García-Acuña J.M. et al. Omentin treatment of epicardial fat improves its anti-inflammatory activity and paracrine benefit on smooth muscle cells. Obesity (Silver Spring). 2017;25(6):1042–1049. DOI: 10.1002/oby.21832
48. Saddic L.A., Nicoloro S.M., Gupta O.T. et al. Joint analysis of left ventricular expression and circulating plasma levels of Omentin after myocardial ischemia. Cardiovasc. Diabetol. 2017;16(1):87. DOI: 10.1186/s12933-017-0567-x
49. Pahwa R., Singh A., Adams-Huet B. et al. Increased inflammasome activity in subcutaneous adipose tissue of patients with metabolic syndrome. Diabetes Metab. Res. Rev. 2021;37(3):e3383. DOI: 10.1002/dmrr.3383
50. Kadoglou N.P.E., Kassimis G., Patsourakos N. et al. Omentin-1 and vaspin serum levels in patients with pre-clinical carotid atherosclerosis and the effect of statin therapy on them. Cytokine. 2021;138:155364. DOI: 10.1016/j.cyto.2020.155364
51. Kadoglou N.P.E., Velidakis N., Khattab E. et al. The interplay between statins and adipokines. Is this another explanation of statins’ ‘pleiotropic’effects? Cytokine. 2021;148:155698. DOI: 10.1016/j.cyto.2021.155698
52. Jung H.N., Jung C.H. The role of anti-inflammatory adipokines in cardiometabolic disorders: moving beyond adiponectin. International Journal of Molecular Sciences. 2021;22(24):13529. DOI: 10.3390/ijms222413529
Review
For citations:
Kolodina D.A., Draganova A.S., Belyaeva O.D., Berkovich O.A. Omentin-1 and Coronary Heart Disease. Title. 2024;23(4):20-26. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-4-20-26