Preview

Title

Advanced search

Problems with Autoimmune Epilepsy Diagnostics

https://doi.org/10.31550/1727-2378-2022-21-8-31-38

Abstract

Objective of the Review: To analyse and systematise knowledge in the problems with autoimmune epilepsy diagnostics.

Main part. Clinical phenotypes of immune-mediated epilepsy depend on various types of antibodies. However, autoimmune epilepsy is diagnosed also in patients who are followed up for chronic refractory unexplained epilepsy, especially in initial epileptic status and late onset epilepsy without structural changes on brain imaging. Brain imaging changes may not be observed, especially in early disease. Very often a diagnostic challenge in autoimmune epilepsy is the difference between epileptic seizures and behavioural symptoms and the mental changes caused by involvement of limbic brain structures. An important role in detection of seizures and differential diagnosis is played by video-EEG-monitoring, which allows identifying the true number of seizures, epileptiform activity between seizures, behavioural changes not related to paroxysmal activity of cortical neurons. Any specific EEG signs for differentiation between various types of autoimmune epilepsy have not been found yet. Still, EEG can provide patterns that are unique for certain forms of autoimmune encephalitis.

Conclusion. Video-EEG-monitoring significantly contributes to autoimmune epilepsy diagnostics, and some changes can be used as markers of disease severity. It is very important, especially in patients with impairment of consciousness, where identification of the clinical status and response to therapy is challenging.

About the Authors

E. A. Kantimirova
Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University (Federal Government-funded Educational Institution of Higher Education), Russian Federation Ministry of Health
Russian Federation

Partizan Zheleznyak Str., Krasnoyarsk, 660022



E. A. Domoratskaya
Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University (Federal Government-funded Educational Institution of Higher Education), Russian Federation Ministry of Health
Russian Federation

Partizan Zheleznyak Str., Krasnoyarsk, 660022



O. S. Shilkina
Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University (Federal Government-funded Educational Institution of Higher Education), Russian Federation Ministry of Health
Russian Federation

Partizan Zheleznyak Str., Krasnoyarsk, 660022



D. V. Dmitrienko
Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University (Federal Government-funded Educational Institution of Higher Education), Russian Federation Ministry of Health
Russian Federation

Partizan Zheleznyak Str., Krasnoyarsk, 660022



References

1. Scheffer I.E., Berkovic S., Capovilla G. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58: 512–521. DOI: 10.1111/epi.13709

2. Shilkina О.S., Kantimirova E.A., Usoltseva A.A., Prusova Т.I., Dmitrenko D.V. Autoimmune epilepsy. Epilepsy and paroxysmal conditions. 2022; 14(1): 74–90. (in Russian). DOI: 10.17749/2077-8333/epi.par.con.2022.108

3. Navarro V., Kas A., Apartis E. et al. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain. 2016; 139(Pt 4): 1079–1093. DOI: 10.1093/brain/aww012

4. Goudot M., Frismand S., Hopes L. t al. Recurrent seizures of autoimmune origin: emerging phenotypes. J. Neurol. 2021; 268: 3000–3010. DOI: 10.1007/s00415-021-10457-1

5. Shnayder N.A., Dmitrenko D.V., Dykhno Yu.A., Ezhikova V.V. Problems of paraneoplastic limbic encephalitis diagnosis. Epilepsy and paroxysmal conditions. 2013; 5(3): 49–58. (in Russian)

6. Dubey D., Alqallaf A., Hays R. et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol. 2017; 74(4): 397–402. DOI: 10.1001/jamaneurol.2016.5429

7. Tecellioglu M., Kamisli O., Kamisli S. et al. Neurological autoantibodies in drug-resistant epilepsy of unknown cause. Ir. J. Med. Sci. 2018; 187(4): 1057–1063. DOI: 10.1007/s11845-018-1777-2

8. Gozubatik-Celik G., Ozkara C., Ulusoy C. et al. Anti-neuronal autoantibodies in both drug responsive and resistant focal seizures with unknown cause. Epilepsy Res. 2017; 135: 131–136. DOI: 10.1016/j.eplepsyres.2017.06.008

9. Gaspard N., Foreman B.P., Alvarez V., Kang C.C. et al. New-onset refractory status epilepticus. Neurology. 2015; 85(18): 1604–1613. DOI: 10.1212/WNL.0000000000001940

10. Süße M., Hamann L., Flöel A., von Podewils F. Nonlesional late-onset epilepsy: semiology, EEG, cerebrospinal fluid, and seizureoutcome characteristics. Epilepsy Behav. 2019; 91: 75–80. DOI: 10.1016/j.yebeh.2018.05.043

11. von Podewils F., Suesse M., Geithner J. et al. Prevalence and outcome of late-onset seizures due to autoimmune etiology: a prospective observational population based cohort study. Epilepsia. 2017; 58(9): 1542–1550. DOI: 10.1111/epi.13834

12. Vanli-Yavuz E.N., Erdag E., Tuzun E. et al. Neuronal autoantibodies in mesial temporal lobe epilepsy with hippocampal sclerosis. J. Neurol. Neurosurg. Psychiatry. 2016; 87(7): 684–692. DOI: 10.1136/jnnp-2016-313146

13. Steriade C., Britton J., Dale R.C. et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune associated epilepsy: conceptual definitions. Epilepsia. 2020; 61(7): 1341– 1351. DOI: 10.1111/epi.16571

14. Joubert B., Saint-Martin M., Noraz N. et al. Characterization of a subtype of autoimmune encephalitis with anti–contactinassociated protein-like 2 antibodie sinthe cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol. 2016; 73(9): 1115–1124. DOI: 10.1001/jamaneurol.2016.1585

15. Thompson J., Bi M., Murchison A.G. et al. The importance of early immunotherapy in patientswith faciobrachial dystonic seizures. Brain. 2018; 141(2): 348–356. DOI: 10.1093/brain/awx323

16. Bermeo-Ovalle A. Scratching the surface in autoimmune epilepsy: it is the time to dig deeper, but how. Epilepsy Curr. 2017; 17(4): 225–226. DOI: 10.5698/1535-7597.17.4.225

17. Panina Yu.S., Dmitrenko D.V., Sapronova M.R. Clinical case of early diagnosis of autoimmune epilepsy. Doctor.Ru. 2019; 1(156): 10–13. (in Russian). DOI: 10.31550/1727-2378-2019-156-1-10-13

18. Iizuka T., Yoshii S., Kan S. et al. Reversible brain atrophy in anti-NMDA receptor encephalitis: a long-term observational study. J. Neurol. 2010; 257(10): 1686–1691. DOI: 10.1007/s00415-010-5604-6

19. Malter M.P., Widman G. Galldiks N. et al. Suspected new-onset autoimmune temporal lobe epilepsy with amygdala enlargement. Epilepsia. 2016; 57(9): 1485–1494. DOI: 10.1111/epi.13471

20. Escudero D., Guasp M., Ariño H. et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology. 2017; 89(14): 1471–1475. DOI: 10.1212/WNL.0000000000004541

21. Dubey D., Sawhney A., Greenberg B. et al. The spectrum of autoimmune encephalopathies. J. Neuroimmunol. 2015; 287: 93–97. DOI: 10.1016/j.jneuroim.2015.08.014

22. Finke C., Prüss H., Heine J. et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol. 2017; 74(1): 50–59. DOI: 10.1001/jamaneurol.2016.4226

23. Guerin J., Watson R.E., Carr C.M. et al. Autoimmune epilepsy: findings on MRI and FDG-PET. Br. J. Radiol. 2019; 92(1093): 20170869. DOI: 10.1259/bjr.20170869.

24. von Podewils F., Suesse M., Geithner J. et al. Prevalence and outcome of late-onset seizures due to auto immune etiology: a prospective observational population based cohort study. Epilepsia. 2017; 58(9): 1542–1550. DOI: 10.1111/epi.13834

25. Graus F., Escudero D., Oleaga L. et al. Syndrome and outcome of antibodynegative limbic encephalitis. Eur. J. Neurol. 2018; 25(8): 1011–1016. DOI: 10.1111/ene.13661

26. Brenner T., Sills G.J., Hart Y. et al. Prevalence of neurologic autoantibodie sincohortsof patients with new and established epilepsy. Epilepsia. 2013; 54(6): 1028–1035. DOI: 10.1111/epi.12127

27. Iizuka T., Sakai F., Ide T. et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008; 70(7): 6–13. DOI: 10.1212/01.wnl.0000278388.90370.c3

28. Dubey D., Pittock S.J., McKeon A. Antibody prevalence in epilepsy and encephalopathy score: increased specificity and applicability. Epilepsia. 2019; 60(2): 367–369. DOI: 10.1111/epi.14649

29. Janga Y., Kim D.W., Yang K. et al. Clinical approach to autoimmune epilepsy. J. Clin. Neurol. 2020; 16(4): 519–529. DOI: 10.3988/jcn.2020.16.4.519

30. Shnayder N.A. Video monitoring of electroencephalography at epilepsy. Siberian Medical Review. 2016; 98(2): 93–105 (in Russian).

31. Veciana J.L., Becerra P., Fossas D. et al. EEG extreme delta brush: An ictal pattern in patients with anti-NMDA receptor encephalitis M. Epilepsy Behav. 2015; 49: 280–285. DOI: 10.3988/jcn.2020.16.4.519

32. Steriade С., Moosa A.N.V., Hantus S. et al. Electroclinical features of seizures associated with autoimmune encephalitis. Seizure. 2018; 60: 198–204. DOI: 10.1016/j.seizure.2018.06.021

33. Schmitt S.E., Pargeon K., Frechette E.S. et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012; 79: 1094–1100. DOI: 10.1212/WNL.0b013e3182698cd8

34. Freund B., Ritzl E.K. A review of EEG in anti-NMDA receptor encephalitis. J. Neuroimmunol. 2019; 332: 64–68. DOI: 10.1016/j.jneuroim.2019.03.010

35. Wesselingh R., Broadley J., Kyndt C., Buzzard K. Electroclinical characteristics of autoimmune encephalitis as outcome biomarkers. J. Neurol. Neurosurg. Psychiatry. 2019; 90: A2. DOI: 10.1136/jnnp-2019-anzan.5

36. Perucca P., Dubeau F., Gotman J. Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain. 2014; 137(1): 183–196. DOI: 10.1093/brain/awt299

37. Suthar R., Saini A.G., Sankhyan N. et al. Childhood anti-NMDA receptor encephalitis. Ind. J. Pediatrics. 2016. 83(7): 628–633. DOI: 10.1007/s12098-015-1988-8

38. Nagappa M., Bindu P.S., Mahadevan A. et al. Clinical features, therapeutic response, and follow-up in pediatric anti-N-Methyl-Daspartate receptor encephalitis: experience from a tertiary care university hospital in India. Neuropediatrics. 2016; 47: 24–32. DOI: 10.1055/s-0035-1569464

39. Liu H., Jian M., Liang F. et al. Anti-N-methyl-D-aspartate receptor encephalitis associated with an ovarian teratoma: two cases report and anesthesia considerations. BMC Anesthesiol. 2015; 15: 150. DOI: 10.1186/s12871-015-0134-5

40. Konuskan B., Yildirim M., Topaloglu H. et al. Clinical presentation of anti-N-methyl-D-aspartate receptor and anti-voltage-gated potassium channel complex antibodies in children: a series of 24 cases. Eur. J. Ped. Neuro. 2018; 22(1): 135–142. DOI: 10.1016/j.ejpn.2017.10.009

41. Tan Y.L., Tan K., Tan N.C. Antiepileptic treatment for anti-NMDA receptor encephalitis: the need for video-EEG monitoring. Epileptic Disord. 2013; 15(4): 468. DOI: 10.1684/epd.2013.0566

42. Nosadini M., Boniver C., Zuliani L. et al. Longitudinal electroencephalographic (EEG) findings in pediatric anti-N-methyl-D-aspartate (anti-NMDA) receptor encephalitis: the Padua experience. J. Child Neurol. 2015; 30(2): 238–245. DOI: 10.1177/0883073813515947

43. Wang Y., Yu Y., Hu Y. et al. Clinical and electroencephalographic features of the seizures in neuronal surface antibody-associated autoimmune encephalitis. Front. Neurol. 2020; 11: 280. DOI: 10.3389/fneur.2020.00280

44. Lawn N.D., Westmoreland B.F., Kiely M.J. et al. Clinical, magnetic resonance imaging, and electroencephalographic findings in paraneoplastic limbic encephalitis. Mayo Clin. Proc. 2003; 78: 1363–1368. DOI: 10.4065/78.11.1363

45. de Mello L.J.V., Seifi A., Perez I.A., Godoy D.A. Electroencephalography during the acute phase of encephalitis: a brief review. J. Neurol. Res. 2020; 10(2): 32–37. DOI: 10.14740/jnr568

46. Ruiz A.R., Vlachy J., Lee J.W. et al. Association of periodic and rhythmic electroencephalographic patterns with seizures in critically ill patients. JAMA Neurol. 2017; 74: 181–188. DOI: 10.1001/jamaneurol.2016.4990

47. Steriade C., Mirsattari S.M., Murray B.J., Wennberg R. Subclinical temporal EEG seizure pattern in LGI1-antibody-mediated encephalitis. Epilepsia. 2016; 57: 155–160. DOI: 10.1111/epi.13436.

48. Aurangzeb S., Symmonds M., Knight R.K. et al. LGI1 anti-body encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure. 2017; 50: 14–17. DOI: 10.1016/j.seizure.2017.05.017

49. Bastiaansen A.E.M., van Sonderen A., Titulaer M.J. Autoimmune encephalitis with anti-leucine-rich glioma-inactivated 1 or anticontactin-associated protein-like 2 antibodies (formerly called voltage-gated potassium channel-complex antibodies). Curr. Opin. Neurol. 2017; 30: 302–309. DOI: 10.1097/WCO.0000000000000444

50. Van Sonderen A., Schreurs M.W., Wirtz P.W. et al. From VGKC to LGI1 and Caspr2 encephalitis: the evolution of a disease entity over time. Autoimmun Rev. 2016; 15: 970–974. DOI: 10.1016/j.autrev.2016.07.018

51. Spatola M., Dalmau J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr. Opin. Neurol. 2017; 30: 345–53. DOI: 10.1097/WCO.0000000000000449

52. Gao L., Liu A., Zhan S. et al. Clinical characterization of autoimmune LGI1 antibody limbic encephalitis. Epilepsy Behav. 2016; 56: 165– 169. DOI: 10.1016/j.yebeh.2015.12.041

53. Li L.H., Ma C.C., Zhang H.F., Lian Y.J. Clinical and electrographic characteristics of seizures in LGI1-antibody encephalitis. Epilepsy Behav. 2018; 88: 277–282. DOI: 10.1016/j.yebeh.2018.08.019

54. Irani S.R., Michell A.W., Lang B. et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann. Neurol. 2011; 69: 892–900. DOI: 10.1002/ana.22307

55. Vogrig A., Joubert B., André-Obadia N. et al. Seizure specificities in patients with antibody-mediated autoimmune encephalitis. Epilepsia. 2019; 60: 1508–1525. DOI: 10.1111/epi.16282

56. Navarro V., Kas A., Apartis E. et al. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain. 2016; 139(4): 1079–1093. DOI: 10.1093/brain/aww012

57. Andrade D.M., Tai P., Dalmau J., Wennberg R. Tonic seizures: a diagnostic clue of anti-LGI1 encephalitis? Neurology. 2011; 76: 1355–1357. DOI: 10.1212/WNL.0b013e3182152808

58. Wang J., Wang K., Wu D. et al. Extreme delta brush guides to the diagnosis of anti-NMDAR encephalitis. J. Neurol. Sci. 2015; 353: 81–83. DOI: 10.1016/j.jns.2015.04.009

59. Zhang W., Wang X., Shao N. et al. Seizure characteristics, treatment, and outcome in autoimmune synaptic encephalitis: a long-term study. Epilepsy Behav. 2019; 94: 198–203. DOI: 10.1016/j.yebeh.2018.10.038

60. Li Z., Cui T., Shi W., Wang Q. Clinical analysis of leucine-rich glioma inactivated-1 protein antibody associated with limbic encephalitis onset with seizures. Medicine. 2016. 95: 4244. DOI: 10.1097/MD.0000000000004244

61. Gillinder L., Warren N., Hartel G., Dionisio S. et al. EEG findings in NMDA encephalitis — a systematic review. Seizure. 2019; 65: 20–24.DOI: 10.1016/j.seizure.2018.12.015

62. Iizuka T., Sakai F., Ide T. et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008; 70: 504–511. DOI: 10.1212/01.wnl.0000278388.90370.c3

63. Zhang Y., Liu G., Di J. Analysis of electroencephalogram characteristics of anti-NMDA receptor encephalitis patients in China. Clin. Neurophysiol. 2017; 128(7): 1227–1233. DOI: 10.1016/j.clinph.2017.04.015

64. Association NBoCM. Chinese experts consensus on the diagnosis and treatment of autoimmune encephalitis. Chin. J. Neurol. 2017: 50; 91–98. DOI: 10.3760/cma.j.issn.1006-7876.2017.02.004

65. Sonderen A.V., Arends S., Tavy D.L.J. et al. Predictive value of electroencephalography in anti-NMDA receptor encephalitis. J. Neurol. Neurosurg. Psychiatry. 2018; 89: 1101–1106. DOI: 10.1136/jnnp-2018-318376

66. Gitiaux C., Simonnet H., Eisermann M. et al. Early electro-clinical features may contribute to diagnosis of the anti-NMDA receptor encephalitis in children. Clin. Neurophysiol. 2013: 124: 2354–2361. DOI: 10.1016/j.clinph.2013.05.023

67. Freund B., Ritzl E.K. A review of EEG in anti-NMDA receptor encephalitis. J. Neuroimmunol. 2019; 332: 64–68. DOI: 10.1016/j.jneuroim.2019.03.010

68. Suthar R., Saini A.G., Sankhyan N. et al. Childhood anti-NMDA receptor encephalitis. Ind. J. Pediatrics. 2016. 83(7): 628–633. DOI: 10.1007/s12098-015-1988-8

69. Foff E.P., Taplinger D., Suski J. et al. EEG findings may serve as a potential biomarker for anti-NMDA receptor encephalitis. Clin. EEG Neurosci. 2017; 48(1): 48–53. DOI: 10.1177/1550059416642660

70. Ho A.C.C., Chan S.H.S., Chan E. et al. Anti-N-methyl-D-aspartate receptor encephalitis in children: incidence and experience in Hong Kong. Brain Dev. 2018; 40(6): 473–479. DOI: 10.1016/j.braindev.2018.02.005

71. Haberlandt E., Ensslen M., Gruber-Sedlmayr U. et al. Epileptic phenotypes, electroclinical features and clinical characteristics in 17 children with anti-NMDAR encephalitis. Eur. J. Ped. Neurol. 2017; 21(3): 457–464. DOI: 10.1016/j.ejpn.2016.11.016

72. Sands T.T., Nash K., Tong S., Sullivan J. Focal seizures in children with antiNMDA receptor antibody encephalitis. Epilepsy Res. 2015; 112: 31–36. DOI: 10.1016/j.eplepsyres.2015.02.010

73. Veciana M., Becerra J.L., Fossas P. et al. EEG extreme delta brush: an ictal pattern in patients with anti-NMDA receptor encephalitis. Epilepsy Behav. 2015; 49: 280–285. DOI: 10.1016/j.yebeh.2015.04.032

74. Steriade C., Hantus S., Moosa A.N.V., Rae-Grant A.D. Extreme delta — with or without brushes: a potential surrogate marker of disease activity in anti-NMDA-receptor encephalitis. Rae-Grant. Clin. Neurophysiol. 2018; 129: 2197–2204. DOI: 10.1016/j.clinph.2018.02.130

75. Limotai C., Denlertchaikul C., Saraya A. W., Jirasakuldej S. Predictive values and specificity of electroencephalographic findings in autoimmune encephalitis diagnosis. Epilepsy Behav. 2018; 84: 29–36. DOI: 10.1016/j.yebeh.2018.04.007

76. Baysal-Kirac L., Tuzun E., Altindag E. et al. Are there any specific EEG findings in autoimmune epilepsies? Clin. EEG Neurosci. 2015; 47(3): 224–234. DOI: 10.1177/1550059415595907

77. Lopes da Silva F.H., Vos J.E., Mooibroek J., Van Rotterdam A. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr. Clin. Neurophysiol. 1980; 50: 449– 456. DOI: 10.1016/0013-4694(80)90011-5

78. Dalmau J., Graus F., Villarejo A. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004; 127: 1831–1844. DOI: 10.1093/brain/awh203


Review

For citations:


Kantimirova E.A., Domoratskaya E.A., Shilkina O.S., Dmitrienko D.V. Problems with Autoimmune Epilepsy Diagnostics. Title. 2022;21(8):31-38. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-8-31-38

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)