Preview

Title

Advanced search

Options and Periods of Epigenetic Influences on the Development of the Fetus

https://doi.org/10.31550/1727-2378-2023-22-3-61-64

Abstract

Aim: To analyze modern research on the variants and frequency of epigenetic effects on fetal development.

Key points. Epigenetic influences provide operational adaptation to the conditions of existence. Immediately after fertilization, the first wave of demethylation, “erasing” of methylation marks of parental gametes. After implantation, the first wave of methylation in blastocyst is carried out. The second wave of demethylation takes place at the beginning of the development of gametes. We know three types of epigenetic effects in the process of ontogenesis: direct influences of life experience refers to changes that occur in human life and caused by “direct life experience” of its adaptation to the conditions of existence. External indirect influences (transgenerations) are an impact of epigenetic changes that have developed in previous generations (both intrauterine and postnatally). Obviously, external indirect influences have a faster route for the transfer of hereditary information in comparison with the genetic mechanisms of inheritance.

Conclusion. Thus, the expansion of our ideas about the epigenetics allows you to see in it the most important mechanism for the adaptation to the conditions of the external environment both on the organism and in the population levels.

About the Authors

P. L. Sokolov
V.F. Voyno-Yasenetsky Scientific and Practical Center of Spicialized Medical Care for Children
Russian Federation

38 Aviatorov Str., Moscow, 119619



N. V. Chebanenko
Russian Medical Academy of Continuous Professional Education; LLC Genomed
Russian Federation

2/1 Barrikadnaya Str., build. 1, Moscow, 125993; 8 Podolskoe Highway, build. 5, Moscow, 115093



References

1. Seisenberger S., Peat J.R., Hore T.A., Santos F. et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20110330. DOI: 10.1098/rstb.2011.0330

2. Zeng Y., Chen T. DNA methylation reprogramming during mammalian development. Genes (Basel). 2019;10(4):257. DOI: 10.3390/genes10040257

3. Hill P.W.S., Leitch H.G., Requena C.E., Sun Z. et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature. 2018;555(7696):392–6. DOI: 10.1038/nature25964

4. SanMiguel J.M., Bartolomei M.S. DNA methylation dynamics of genomic imprinting in mouse development. Biol. Reprod. 2018;99(1):252–62. DOI: 10.1093/biolre/ioy036

5. Ispada J., da Fonseca Junior A.M., Santos O.L.R., Bruna de Lima C. et al. Metabolism-driven post-translational modifications of H3K9 in early bovine embryos. Reproduction. 2021;162(3):181–91. DOI: 10.1530/REP-21-0134

6. Chu M., Yao F., Xi G., Yang J. et al. Vitamin C rescues in vitro embryonic development by correcting impaired active DNA demethylation. Front. Cell Dev. Biol. 2021;9:784244. DOI: 10.3389/fcell.2021.784244

7. Breton-Larrivée M., Elder E., McGraw S. DNA methylation, environmental exposures and early embryo development. Anim. Reprod. 2019;16(3):465–74. DOI: 10.21451/1984-3143-AR2019-0062

8. Lacal I., Ventura R. Epigenetic inheritance: concepts, mechanisms and perspectives. Front. Mol. Neurosci. 2018;11:292. DOI: 10.3389/fnmol.2018.00292

9. Zhao H., Chen T. Tet family of 5-methylcytosine dioxygenases in mammalian development. J. Hum. Genet. 2013;58:421–7. DOI: 10.1038/jhg. 2013.63

10. Wu H., Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156(1–2):45–68. DOI: 10.1016/j.cell.2013.12.019

11. Kurimoto K., Saitou M. Germ cell reprogramming. Curr. Top. Dev. Biol. 2019;135:91–125. DOI: 10.1016/bs.ctdb.2019.04.005

12. Song H., Wang L., Chen D., Li F. The function of pre-mRNA alternative splicing in mammal spermatogenesis. Int. J. Biol. Sci. 2020;16(1):38–48. DOI: 10.7150/ijbs.34422

13. Guo Z., Zhang L., Li Y., Wu S. et al. Expression profiling of the Kdm genes in scallop Patinopecten yessoensis suggests involvement of histone demethylation in regulation of early development and gametogenesis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2020;243–4:110434. DOI: 10.1016/j.cbpb.2020.110434

14. Ellis P.J.I., Griffin D.K. Form from function, order from chaos in male germline chromatin. Genes (Basel). 2020;11(2):210. DOI: 10.3390/genes11020210

15. Gui Y., Yuan S. Epigenetic regulations in mammalian spermatogenesis: RNAm6A modification and beyond. Cell. Mol. Life Sci. 2021;78(11):4893–905. DOI: 10.1007/s00018-021-03823-9

16. Yamazaki T., Hatano Y., Taniguchi R., Kobayashi N. et al. Editing DNA methylation in mammalian embryos. Int. J. Mol. Sci. 2020;21(2):637. DOI: 10.3390/ijms21020637

17. Jawahar M.C., Murgatroyd C., Harrison E.L., Baune B.T. Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disorders. Clin. Epigenetics. 2015;7:122. DOI: 10.1186/s13148-015-0156-3

18. Maccari S., Polese D., Reynaert M., Amici T. et al. Early-life experiences and the development of adult diseases with a focus on mental illness: the human Birth theory. Neuroscience. 2017;342:232–51. DOI: 10.1016/j.neuroscience.2016.05.042

19. Wang T., Zhang J., Xu Y. Epigenetic basis of lead-induced neurological disorders. Int. J. Environ. Res. Public Health. 2020;17(13):4878. DOI: 10.3390/ijerph17134878

20. Sarkies P. Molecular mechanisms of epigenetic inheritance: possible evolutionary implications. Semin. Cell Dev. Biol. 2020;97:106–15. DOI: 10.1016/j.semcdb.2019.06.005

21. Faa G., Manchia M., Pintus R., Gerosa C. et al. Fetal programming of neuropsychiatric disorders. Birth Defect. Res. C Embryo Today. 2016;108:207– 23. DOI: 10.1002/bdrc.21139

22. Rasmussen J.M., Thompson P.M., Entringer S., Buss C. et al. Fetal programming of human energy homeostasis brain networks: issues and considerations. Obes. Rev. 2022;23(3):e13392. DOI: 10.1111/obr.13392

23. van den Heuvel M.I. Intergenerational transmission of childhood adversityrelated risk: fetal brain programming as potential mechanism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2021;6(4):385–6. DOI: 10.1016/j.bpsc.2021.01.008

24. Netrebenko O.K., Scheplyagina L.A., Gribakin S.G. Metabolic programming and epigenetics in pediatrics. Treatment and Prevention. 2020;10(1):29–35. (in Russian)

25. Lautarescu A., Craig M.C., Glover V. Prenatal stress: effects on fetal and child brain development. Int. Rev. Neurobiol. 2020;150:17–40. DOI: 10.1016/bs.irn.2019.11.002

26. Al-Gubory K.H. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod. Biomed. Online. 2014;29(1):17–31. DOI: 10.1016/j.rbmo.2014.03.002

27. Van den Bergh B.R.H., van den Heuvel M.I., Lahti M., Braeken M. et al. Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. 2020;117:26–64. DOI: 10.1016/j.neubiorev.2017.07.003

28. Sokolov P.L., Prityko A.G., Chebanenko N.V., Romanov P.A. An indirect pathway for genetic influence on the formation of the cerebral palsy phenotype: genome and hypoxia tolerance. Russian Medical Journal. 2019;25(5–6):328–34. (in Russian). DOI: 10.18821/0869-2106- 2019-25-5-6-328-334

29. Sokolov P.L., Chebanenko N.V., Romanov P.A. Epigenetic factors in hypoxic-ischemic brain affections in children. Doctor.Ru. 2021;20(10):68–72. (in Russian). DOI: 10.31550/1727-2378-2021-20-10-68-72

30. Todrank J., Heth G., Restrepo D. Effects of in utero odorant exposure on neuroanatomical development of the olfactory bulb and odour preferences. Proc. Biol. Sci. 2011;278(1714):1949–55. DOI: 10.1098/rspb.2010.2314

31. Hunter D.S., Hazel S.J., Kind K.L., Owens J.A. et al. Programming the brain: common outcomes and gaps in knowledge from animal studies of IUGR. Physiol. Behav. 2016;164(ptA):233–48. DOI: 10.1016/j.physbeh.2016.06.005

32. Maccani M.A., Marsit C.J. Epigenetics in the placenta. Am. J. Reprod. Immunol. 2009;62(2):78–89. DOI: 10.1111/j.1600-0897.2009.00716.x

33. Rosenfeld C.S. The placenta-brain-axis. J. Neurosci. Res. 2021;99(1):271–83. DOI: 10.1002/jnr.24603

34. Yen S.S. The placenta as the third brain. J. Reprod. Med. 1994;39(4):277–80.

35. Valsamakis G., Papatheodorou D., Chalarakis N., Manolikaki M. et al. Maternal chronic stress correlates with serum levels of cortisol, glucose and C-peptide in the fetus, and maternal non chronic stress with fetal growth. Psychoneuroendocrinology. 2020;114:104591. DOI: 10.1016/j.psyneuen.2020.104591

36. Wang W.S., Guo C.M., Sun K. Cortisol regeneration in the fetal membranes, a coincidental or requisite event in human parturition? Front. Physiol. 2020;11:462. DOI: 10.3389/fphys.2020.00462

37. McGoldrick E., Stewart F., Parker R., Dalziel S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020;12(12):CD004454. DOI: 10.1002/14651858.CD004454.pub4

38. Hodyl N.A., Stark M.J., Meyer E.J., Lewis J.G. et al. High binding site occupancy of corticosteroid-binding globulin by progesterone increases fetal free cortisol concentrations. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020;251:129–35. DOI: 10.1016/j.ejogrb.2020.05.034

39. Lester B.M., Conradt E., Marsit C.J. Epigenetic basis for the development of depression in children. Clin. Obstet. Gynecol. 2013;56(3):556–65. DOI: 10.1097/GRF.0b013e318299d2a8

40. Marsit C.J., Maccani M.A., Padbury J.F., Lester B.M. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PloS One. 2012;7(3):e33794. DOI: 10.1371/journal.pone.0033794

41. Galbally M., Watson S.J., Lappas M., de Kloet E.R. et al. Fetal programming pathway from maternal mental health to infant cortisol functioning: the role of placental 11beta-HSD2 mRNA expression. Psychoneuroendocrinology. 2021;127:105197. DOI: 10.1016/j.psyneuen.2021.105197

42. Bromer C., Marsit C.J., Armstrong D.A., Padbury J.F. et al. Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. Dev. Psychobiol. 2013;55(7):673–83. DOI: 10.1002/dev.21061

43. Bouret S.G. Neurodevelopmental actions of leptin. Brain Res. 2010;1350:2–9. DOI: 10.1016/j.brainres.2010.04.011

44. Gambino Y.P., Maymó J.L., Pérez Pérez A., Calvo J.C. et al. Elsevier Trophoblast Research Award lecture: molecular mechanisms underlying estrogen functions in trophoblastic cells — focus on leptin expression. Placenta. 2012;33(suppl.):S63–70. DOI: 10.1016/j.placenta.2011.12.001

45. Lesseur C., Armstrong D.A., Murphy M.A., Appleton A.A. et al. Sex-specific associations between placental leptin promoter DNA methylation andinfant neurobehavior. Psychoneuroendocrinology. 2014;40:1–9. DOI: 10.1016/j.psyneuen.2013.10.012

46. Veenendaal M.V.E., Painter R.C., de Rooij S.R., Bossuyt P.M. et al. Transgenerational effects of prenatal exposure to the 1944–1945 Dutch famine. BJOG. 2013;120(5):548–53. DOI: 10.1111/1471-0528.12136

47. Heijmans B.T., Tobi E.W., Stein A.D., Putter H. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA. 2008;105(44):17046–9. DOI: 10.1073/pnas.0806560105

48. Schulz L.C. The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl. Acad. Sci. USA. 2010;107(39):16757–8. DOI: 10.1073/pnas.1012911107

49. Kellermann N.P. Epigenetic transmission of holocaust trauma: can nightmares be inherited? Isr. J. Psychiatry Relat. Sci. 2013;50(1):33–9.

50. Vaage A.B., Thomsen P.H., Rousseau C., Wentzel-Larsen T. et al. Paternal predictors of the mental health of children of Vietnamese refugees. Child Adolesc. Psychiatry Ment. Health. 2011;5:2. DOI: 10.1186/1753-2000-5-2

51. Qiu J. Epigenetics: unfinished symphony. Nature. 2006;441(7090):143–5. DOI: 10.1038/441143a


Review

For citations:


Sokolov P.L., Chebanenko N.V. Options and Periods of Epigenetic Influences on the Development of the Fetus. PEDIATRICS. 2023;22(3):61-64. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-3-61-64

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)