Preview

Title

Advanced search

Perinatal Neuroprotection Strategy in Children: Current State of the Problem and Prospects

https://doi.org/10.31550/1727-2378-2024-23-3-49-54

Abstract

Aim. To determine the existing possibilities for protecting the brain in children during an unfavorable course of the perinatal period.

Key points. Injury of the central nervous system are one of the most common pathological conditions in the neonatal period. The article presents modern data on the pathogenesis of perinatal brain injury. Characteristics of various therapeutic and preventive strategies for perinatal neuroprotection are given, modern methods and candidate drugs for providing it are described. Particular attention is paid to their mechanisms of action, as well as advantages and disadvantages.

Conclusion. Additional strategies for the prevention and treatment of brain injury are urgently needed for improve the outcome and prognosis of preterm and full-term neonates.

About the Authors

E. B. Pavlinova
Omsk State Medical University
Russian Federation

77 Kuybyshev Str., Omsk, 644001



A. A. Gubich
Omsk State Medical University
Russian Federation

77 Kuybyshev Str., Omsk, 644001



O. A. Savchenko
Omsk State Medical University
Russian Federation

77 Kuybyshev Str., Omsk, 644001



References

1. Leijser L.M., de Vries L.S. Preterm brain injury: germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. Handb. Clin. Neurol. 2019;162:173–99. DOI: 10.1016/B978-0-444-64029-1.00008-4

2. McNally M.A., Soul J.S. Pharmacologic prevention and treatment of neonatal brain injury. Clin. Perinatol. 2019;46(2):311–25. DOI: 10.1016/j.clp.2019.02.006

3. Bersani I., Pluchinotta F., Dotta A., Savarese I. et al. Early predictors of perinatal brain damage: the role of neurobiomarkers. Clin. Chem. Lab. Med. 2020;58(4):471–86. DOI: 10.1515/cclm-2019-0725

4. Cаnovas-Ahedo M., Alonso-Alconada D. Terapia combinada frente a la encefalopatia hipоxico-isquеmica neonatal [Combined therapy in neonatal hypoxic-ischaemic encephalopathy]. An. Pediatr. (Engl. Ed.). 2019;91(1):59.e1–7. DOI: 10.1016/j.anpedi.2019.04.007

5. Silveira R.C., Procianoy R.S. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy. J. Pediatr. (Rio J.). 2015; 91(6 suppl.1):S78–83. DOI: 10.1016/j.jped.2015.07.004

6. Carreras N., Alsina M., Alarcon A., Arca-Diaz G. et al. Efficacy of passive hypothermia and adverse events during transport of asphyxiated newborns according to the severity of hypoxic-ischemic encephalopathy. J. Pediatr. (Rio J.). 2018;94(3):251–7. DOI: 10.1016/j.jped.2017.05.009

7. Iova A.S., ed. Intraventricular hemorrhages in premature newborns. Fundamentals of personalized medical care: a textbook. SPb.: SpetsLit; 2020. 64 p. (in Russian)

8. Lim J., Hagen E. Reducing germinal matrix-intraventricular hemorrhage: perinatal and delivery room factors. Neoreviews. 2019;20(8):e452–63. DOI: 10.1542/neo.20-8-e452

9. Handley S.C., Passarella M., Lee H.C., Lorch S.A. Incidence trends and risk factor variation in severe intraventricular hemorrhage across a population based cohort. J. Pediatr. 2018;200:24–9.e3. DOI: 10.1016/j.jpeds.2018.04.020

10. Romantsik O., Bruschettini M., Moreira A., Thеbaud B. et al. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst. Rev. 2019;9(9):CD013201. DOI: 10.1002/14651858.CD013201.pub2

11. Sofronova L.N., Fedorova L.A. Premature baby. Directory. M.: Editorial board of the StatusPraesens; 2020. 312 p. (in Russian)

12. Guzeva V.I., Ivanov D.O., Aleksandrovich Yu.S., Palchik A.B. et al. Emergency neurology of newborns and young children. SPb.: SpetsLit; 2017. 215 p. (in Russian)

13. Boyle A.K., Rinaldi S.F., Norman J.E., Stock S.J. Preterm birth: inflammation, fetal injury and treatment strategies. J. Reprod. Immunol. 2017;119:62–6. DOI: 10.1016/j.jri.2016.11.008

14. Leviton A., Allred E.N., Dammann O., Engelke S. et al. Systemic inflammation, intraventricular hemorrhage, and white matter injury. J. Child. Neurol. 2013;28(12):1637–45. DOI: 10.1177/0883073812463068

15. Qin X., Cheng J., Zhong Y., Mahgoub O.K. et al. Mechanism and treatment related to oxidative stress in neonatal hypoxic-ischemic encephalopathy. Front. Mol. Neurosci. 2019;12:88. DOI: 10.3389/fnmol.2019.00088

16. van Westering-Kroon E., Huizing M.J., Villamor-Martinez E., Villamor E. Male disadvantage in oxidative stress-associated complications of prematurity: a systematic review, meta-analysis and meta-regression. Antioxidants (Basel). 2021;10(9):1490. DOI: 10.3390/antiox10091490

17. Perez M., Robbins M.E., Revhaug C., Saugstad O.D. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 2019;142:61–72. DOI: 10.1016/j.freeradbiomed.2019.03.035

18. Marseglia L., D'Angelo G., Manti S., Arrigo T. et al. Oxidative stress-mediated aging during the fetal and perinatal periods. Oxid. Med. Cell. Longev. 2014;2014:358375. DOI: 10.1155/2014/358375

19. Torres-Cuevas I., Parra-Llorca A., Sanchez-Illana A., Nunez-Ramiro A. et al. Oxygen and oxidative stress in the perinatal period. Redox. Biol. 2017;12:674–81. DOI: 10.1016/j.redox.2017.03.011

20. Glover Williams A., Odd D., Bates S., Russell G. et al. Elevated international normalized ratio (INR) is associated with an increased risk of intraventricular hemorrhage in extremely preterm infants. J. Pediatr. Hematol. Oncol. 2019;41(5):355–60. DOI: 10.1097/MPH.0000000000001509

21. Hochart A., Nuytten A., Pierache A., Bauters А. et al. Hemostatic profile of infants with spontaneous prematurity: can we predict intraventricular hemorrhage development? Ital. J. Pediatr. 2019;45(1):113. DOI: 10.1186/s13052-019-0709-8

22. Poralla C., Traut C., Hertfelder H.J., Oldenburg J. et al. The coagulation system of extremely preterm infants: influence of perinatal risk factors on coagulation. J. Perinatol. 2012;32(11):869–73. DOI: 10.1038/jp.2011.182

23. Milovanova O.A., Amirkhanova D.Yu., Mironova A.K., Dzhukkayeva M.M. et al. The risk of forming neurological disease in extremely premature infants: a review of literature and clinical cases. Medical Council. 2021;1: 20–9. (in Russian). DOI: 10.21518/2079-701X-2021-1-20-29

24. Palchik A.B., Fedorova L.A., Ponyatishin A.E. Intraventricular hemorrhages in newborns. Guidelines. SPb.; 2019. 50 p. (in Russian)

25. Bauer C.M., Papadelis C. Alterations in the structural and functional connectivity of the visuomotor network of children with periventricular leukomalacia. Semin. Pediatr. Neurol. 2019;31: 48–56. DOI: 10.1016/j.spen.2019.05.009

26. Singhi S., Johnston M. Recent advances in perinatal neuroprotection. F1000Res. 2019;8:F1000. DOI: 10.12688/f1000research.20722.1

27. Volodin N.N., ed. Clinical guidelines: management of newborns with respiratory distress syndrome. 2016. 48 p. (in Russian)

28. Shepherd E., Salam R.A., Middleton P., Makrides M. et al. Antenatal and intrapartum interventions for preventing cerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 2017;8(8):CD012077. DOI: 10.1002/14651858.CD012077.pub2

29. Shepherd E., Salam R.A., Middleton P., Han S. et al. Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews. Cochrane Database Syst. Rev. 2018;6(6):CD012409. DOI: 10.1002/14651858.CD012409.pub2

30. Chollat C., Marret S. Magnesium sulfate and fetal neuroprotection: overview of clinical evidence. Neural. Regen. Res. 2018;13(12): 2044–9. DOI: 10.4103/1673-5374.241441

31. Lingam I., Robertson N.J. Magnesium as a neuroprotective agent: a review of its use in the fetus, term infant with neonatal encephalopathy, and the adult stroke patient. Dev. Neurosci. 2018;40(1):1–12. DOI: 10.1159/000484891

32. Pluta R., Furmaga-Jablonska W., Januszewski S., Tarkowska A. Melatonin: a potential candidate for the treatment of experimental and clinical perinatal asphyxia. Molecules. 2023;28(3):1105. DOI: 10.3390/molecules28031105

33. Solevag A.L., Schmolzer G.M., Cheung P.Y. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic. Biol. Med. 2019;142:113–22. DOI: 10.1016/j.freeradbiomed.2019.04.028

34. Laptook A.R. Birth asphyxia and hypoxic-ischemic brain injury in the preterm infant. Clin. Perinatol. 2016;43(3):529–45. DOI: 10.1016/j.clp.2016.04.010

35. Nematov G.Kh., Agashkov V.S., Vereshchinsky A.M., Makarova T.L. Hypothermia. Beyond the limits of the possible. Healthcare of Ugra: Experience and Innovations. 2021;4(29):15–23. (in Russian)

36. Lenyushkina A.A., Andreyev A.V., Sharafutdinova D.R., Krogh-Jensen O.A. Caffeine citrate in neonatology: history, pharmacodynamics and pharmacokinetics, clinical effects, dosage regimens: a review. Neonatology: News, Opinions, Training. 2023;11(1):76–82. (in Russian). DOI: 10.33029/2308-2402-2023-11-1-76-82

37. Frymoyer A., Juul S.E., Massaro A.N., Bammler T.K. et al. High-dose erythropoietin population pharmacokinetics in neonates with hypoxic-ischemic encephalopathy receiving hypothermia. Pediatr. Res. 2017;81(6):865–72. DOI: 10.1038/pr.2017.15

38. Juul S.E., Comstock B.A., Heagerty P.J., Mayock D.E. et al. High-dose erythropoietin for asphyxia and encephalopathy (HEAL): a randomized controlled trial — background, aims, and study protocol. Neonatology. 2018;113(4):331–8. DOI: 10.1159/000486820

39. Ighodaro O.M., Akinloye O.A. First line defence antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018;54(4):287–93. DOI: 10.1016/j.ajme.2017.09.001

40. Younus H. Therapeutic potentials of superoxide dismutase. Int. J. Health. Sci. (Qassim). 2018;12(3):88–93

41. Scafidi J., Hammond T.R., Scafidi S., Ritter J. et al. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature. 2014;506(7487):230–4. DOI: 10.1038/nature12880

42. Volpe J.J. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 2019;95:42–66. DOI: 10.1016/j.pediatrneurol.2019.02.016

43. Ahn S.Y., Park W.S., Sung S.I., Chang Y.S. Mesenchymal stem cell therapy for intractable neonatal disorders. Pediatr. Neonatol. 2021;62(suppl.1):S16–21. DOI: 10.1016/j.pedneo.2020.11.007

44. Thebaud B. Stem cells for extreme prematurity. Am. J. Perinatol. 2019;36(suppl.02):S68–73. DOI: 10.1055/s-0039-1691774


Review

For citations:


Pavlinova E.B., Gubich A.A., Savchenko O.A. Perinatal Neuroprotection Strategy in Children: Current State of the Problem and Prospects. Title. 2024;23(3):49-54. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-3-49-54

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)