Preview

Title

Advanced search

Interaction Between Epstein-Barr Virus and Human Papilloma Virus in Cervical Cancer. Possible Prevention

https://doi.org/10.31550/1727-2378-2022-21-1-59-64

Abstract

Objective of the Review: To comprehensively analyse the potential role of Epstein-Barr virus (EBV) in development of cervical cancer.

Key Points. Human papilloma virus (HPV) is a key causative factor of cervical cancer. However, there are a lot of data collected over the last two decades demonstrating that EBV has a role to play in this process; still, its contribution to development of cervical cancer has been studied poorly. This review describes the real-time published data on EBV and HPV co-infection in the genesis of cervical cancer, and the potential role of EBV in gynaecological cancer progression.

Conclusion. EBV has an important role in the genesis and progression of some human malignancies including lymphoid tumours (both В- and Т-cell cancer) and carcinoma (nasopharyngeal and gastric cancer). The available data are indicative of potential cause-effect relations between EBV and cervical cancer pathogenesis. A frequent EBV and HPV co-infection in cervical cancer witnesses possible cancer-causing interaction between the two viruses. Thus, more in-depth studies are needed to find out the mechanisms underlying the EBV and HPV synergism and its clinical effects. Taking into account successful cervical cancer prevention with HPV vaccine and possible future EBV vaccination, the carcinogenesis mechanisms should be studied more thoroughly in order to improve the prevention of oncological diseases.

About the Authors

D. A. Khlanta
A.I. Yevdokimov Moscow State University of Medicine and Dentistry (a Federal Government-funded Educational Institution of Higher Education), Russian Federation Ministry of Health
Russian Federation

20 Delegatskaya St., Bldg. 1, Moscow, 127473



G. P. Guens
A.I. Yevdokimov Moscow State University of Medicine and Dentistry (a Federal Government-funded Educational Institution of Higher Education), Russian Federation Ministry of Health
Russian Federation

20 Delegatskaya St., Bldg. 1, Moscow, 127473



References

1. Vedham V., Verma M., Mahabir S. Early-life exposures to infectious agents and later cancer development. Cancer Med. 2015; 4(12): 1908–22. DOI: 10.1002/cam4.538

2. Mui U.N., Haley C.T., Tyring S.K. Viral oncology: molecular biology and pathogenesis. J. Clin. Med. 2017; 6(12): 111. DOI: 10.3390/jcm6120111

3. Weiss R.A. Tumour-inducing viruses. Br. J. Hosp. Med. (Lond.). 2016; 77(10): 565–8. DOI: 10.12968/hmed.2016.77.10.565

4. Esau D. Viral causes of lymphoma: the history of Epstein — Barr virus and human T-lymphotropic virus 1. Virology (Auckl.). 2017; 8: 1178122X17731772. DOI: 10.1177/1178122X17731772

5. Alipour M. Molecular mechanism of Helicobacter pylori-induced gastric cancer. J. Gastrointest. Cancer. 2021; 52(1): 23–30. DOI: 10.1007/s12029-020-00518-5

6. de Martel C., Georges D., Bray F. et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health. 2020; 8(2): e180–90. DOI: 10.1016/S2214-109X(19)30488-7

7. Shi Y., Peng S.-L., Yang L.-F. et al. Co-infection of Epstein — Barr virus and human papillomavirus in human tumorigenesis. Chin. J. Cancer. 2016; 35: 16. DOI: 10.1186/s40880-016-0079-1

8. Cunnea P., Fotopoulou C., Ploski J. et al. Changes in stem cell regulation and epithelial organisation during carcinogenesis and disease progression in gynaecological malignancies. Cancers (Basel.). 2021; 13(13): 3349. DOI: 10.3390/cancers13133349

9. Djaoud Z., Guethlein L.A., Horowitz A. et al. Two alternate strategies for innate immunity to Epstein — Barr virus: one using NK cells and the other NK cells and γδ T cells. J. Exp. Med. 2017; 214(6): 1827–41. DOI: 10.1084/jem.20161017

10. Longnecker R.M., Kieff E., Cohen J.I. Epstein — Barr virus. In: Fields B.N., Knipe D.M., Howley P.M., eds. Fields virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013: 1898–959.

11. Styczynski J., Tridello G., Gil L. et al. Impact of donor Epstein — Barr virus serostatus on the incidence of graft-versus-host disease in patients with acute leukemia after hematopoietic stem-cell transplantation: a study from the acute leukemia and infectious diseases working parties of the European Society for Blood and Marrow Transplantation. J. Clin. Oncol. 2016; 34(19): 2212–20. DOI: 10.1200/JCO.2015.64.2405

12. Chen L., Qiu X., Zhang N. et al. APOBEC-mediated genomic alterations link immunity and viral infection during human papillomavirus-driven cervical carcinogenesis. Biosci. Trends. 2017; 11: 383–8. DOI: 10.5582/bst.2017.01103

13. de Lima M.A.P., Neto P.J.N., Lima L.P.M. et al. Association between Epstein — Barr virus (EBV) and cervical carcinoma: a metaanalysis. Gynecol. Oncol. 2018; 148(2): 317–28. DOI: 10.1016/j.ygyno.2017.10.005

14. Blanco R., Carrillo-Beltrán D., Osorio J.C. et al. Role of Epstein — Barr virus and human papillomavirus coinfection in cervical cancer: epidemiology, mechanisms and perspectives. pathogens. 2020; 9(9): 685. DOI: 10.3390/pathogens9090685

15. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human papillomaviruses. IARC Monogr. Eval Carcinog. Risks Hum. 2007; 90: 1–636.

16. International Collaboration of Epidemiological Studies of Cervical Cancer. Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma and 1,374 women with adenocarcinoma from 12 epidemiological studies. Int. J. Cancer. 2007; 120(4): 885–91. DOI: 10.1002/ijc.22357

17. Morales-Sánchez A., Fuentes-Pananá E.M. Human viruses and cancer. Viruses. 2014; 6(10): 4047–79. DOI: 10.3390/v6104047

18. Hatta M.N.A., Mohamad Hanif E.A., Chin S.F. et al. Pathogens and carcinogenesis: a review. Biology (Basel). 2021; 10(6): 533. DOI: 10.3390/biology10060533

19. Suresh A., Suresh P., Biswas R. et al. Prevalence of high-risk HPV and its genotypes-Implications in the choice of prophylactic HPV vaccine. J. Med. Virol. 2021; 93(8): 5188–92. DOI: 10.1002/jmv.27015

20. Okunade K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2020; 40(5): 602–8. DOI: 10.1080/01443615.2019.1634030

21. de Martel C., Plummer M., Vignat J. et al. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer. 2017; 141(4): 664–70. DOI: 10.1002/ijc.30716

22. Staats P.N., Davey D.D., Witt B.L. et al. Performance of specific morphologic features in distinguishing low-grade squamous intraepithelial lesions from high-grade squamous intraepithelial lesionsin borderline cases: a College of American Pathologists Cytopathology Committee multiobserver study. J. Am. Soc. Cytopathol. 2021; S2213- 2945(21)00264-7. DOI: 10.1016/j.jasc.2021.11.001

23. Näher H., Gissmann L., Freese U.K. et al. Subclinical Epstein — Barr virus infection of both the male and female genital tract — indication for sexual transmission. J. Invest. Dermatol. 1992; 98(5): 791–3. DOI: 10.1111/1523-1747.ep12499958

24. Sixbey J.W., Lemon S.M., Pagano J.S. A second site for Epstein — Barr virus shedding: the uterine cervix. Lancet. 1986; 2(8516): 1122–4. DOI: 10.1016/s0140-6736(86)90531-3

25. Guidry J.T., Scott R.S. The interaction between human papillomavirus and other viruses. Virus Res. 2017; 231: 139–47. DOI: 10.1016/j.virusres.2016.11.002

26. Yefenof E. Epstein Barr virus (EBV) and complement (C3) interactions with human lymphoid cells. Haematol. Blood Transfus. 1979; 23: 237–8. DOI: 10.1007/978-3-642-67057-2-30

27. Justiz Vaillant A.A., Vashisht R., Zito P.M. Immediate hypersensitivity reactions. In: StatPearls. Treasure Island (FL): StatPearls Publishing; November 15, 2021.

28. Castro D., Vera J.D., Soto-Becerra P. et al. Epstein — Barr virus and its prognostic value in a cohort of Peruvian women with cervical cancer. medRxiv. 2020.08.04.20167841. DOI: 10.1101/2020.08.04.20167841

29. Feng M., Duan R., Gao Y. et al. Role of Epstein — Barr virus and human papillomavirus coinfection in cervical intraepithelial neoplasia in Chinese women living with HIV. Front. Cell Infect. Microbiol. 2021; 11: 703259. DOI: 10.3389/fcimb.2021.703259

30. Klymenko T., Gu Q., Herbert I. et al. RNA-Seq analysis of differentiated keratinocytes reveals a massive response to late events during human papillomavirus 16 infection, including loss of epithelial barrier function. J. Virol. 2017; 91(24): e01001–17. DOI: 10.1128/JVI.01001-17

31. Wang L.W., Jiang S., Gewurz B.E. Epstein — Barr virus LMP1-mediated oncogenicity. J. Virol. 2017; 91(21): e01718–16. DOI: 10.1128/JVI.01718-16

32. Aromseree S., Middeldorp J.M., Pientong C. et al. High levels of EBVencoded RNA 1 (EBER1) trigger interferon and inflammation-related genes in keratinocytes expressing HPV16 E6/E7. PLoS One. 2017; 12(1): e0169290. DOI: 10.1371/journal.pone.0169290

33. Lan T., Chen L., Wei X. Inflammatory cytokines in cancer: comprehensive understanding and clinical progress in gene therapy. Cells. 2021; 10(1): 100. DOI: 10.3390/cells10010100

34. Fishbein A., Hammock B.D., Serhan C.N. et al. Carcinogenesis: failure of resolution of inflammation? Pharmacol. Ther. 2021; 218: 107670. DOI: 10.1016/j.pharmthera.2020.107670

35. Cyprian F.S., Al-Farsi H.F., Vranic S. et al. Epstein — Barr virus and human papillomaviruses interactions and their roles in the initiation of epithelial-mesenchymal transition and cancer progression. Front. Oncol. 2018; 8: 111. DOI: 10.3389/fonc.2018.00111

36. Elgui de Oliveira D., Müller-Coan B.G., Pagano J.S. Viral carcinogenesis beyond malignant transformation: EBV in the progression of human cancers. Trends Microbiol. 2016; 24(8): 649–64. DOI: 10.1016/j.tim.2016.03.008

37. Chen X., Bode A.M., Dong Z. et al. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer. FASEB J. 2016; 30(9): 3001–10. DOI: 10.1096/fj.201600388R

38. Fontham E.T.H., Wolf A.M.D., Church T.R. et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 2020; 70(5): 321–46. DOI: 10.3322/caac.21628

39. Committee Opinion No. 704: human papillomavirus vaccination. Obstet. Gynecol. 2017; 129(6): 1. DOI: 10.1097/AOG.0000000000002052

40. Rosalik K., Tarney C., Han J. Human papilloma virus vaccination. Viruses. 2021; 13(6): 1091. DOI: 10.3390/v13061091

41. Filippov O.V., Bolshakova L.N., Elagina T.N. et al. Regional schedule of vaccination in Moscow: history, development, prospects. Epidemiology and Vaccinal Prevention. 2020; 19(4): 63–75. (in Russian. DOI: 10.31631/2073-3046-2020-19-4-63-75

42. Dilley S., Miller K.M., Huh W.K. Human papillomavirus vaccination: ongoing challenges and future directions. Gynecol. Oncol. 2020; 156(2): 498–502. DOI: 10.1016/j.ygyno.2019.10.018

43. Safaeian M., Sampson J.N., Pan Y. et al. Durability of protection afforded by fewer doses of the HPV16/18 vaccine: the CVT trial. J. Natl. Cancer Inst. 2018; 110(2): 205–12. DOI: 10.1093/jnci/djx158

44. Kjaer S.K., Nygård M., Dillner J. et al. A 12-year follow-up on the longterm effectiveness of the quadrivalent human papillomavirus vaccine in 4 nordic countries. Clin. Infect. Dis. 2017; 66(3): 339–45. DOI: 10.1093/cid/cix797

45. Arbyn M., Xu L., Simoens C. et al. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst. Rev. 2018; 5(5): CD009069. DOI: 10.1002/14651858.CD009069.pub3

46. Palmer T., Wallace L., Pollock K.G. et al. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12–13 in Scotland: retrospective population study. BMJ. 2019; 365: l1161. DOI: 10.1136/bmj.l1161

47. Dunmire S.K., Verghese P.S., Balfour H.H. Jr. Primary Epstein — Barr virus infection. J. Clin. Virol. 2018; 102: 84–92. DOI: 10.1016/j.jcv.2018.03.001

48. Rajcani J., Banati F., Szenthe K. et al. The potential of currently unavailable herpes virus vaccines. Expert Rev. Vaccines. 2018; 17: 239– 48. DOI: 10.1080/14760584.2018.1425620

49. Shannon-Lowe C., Rickinson A. The global landscape of EBV-associated tumors. Front. Oncol. 2019; 9: 713. DOI: 10.3389/fonc.2019.00713

50. Rühl J., Leung C.S., Münz C. Vaccination against the Epstein — Barr virus. Cell Mol. Life Sci. 2020; 77(21): 4315–24. DOI: 10.1007/s00018-020-03538-3


Review

For citations:


Khlanta D.A., Guens G.P. Interaction Between Epstein-Barr Virus and Human Papilloma Virus in Cervical Cancer. Possible Prevention. Title. 2022;21(1):59-64. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-1-59-64

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)