Preview

Title

Advanced search

Repeated Implant Failures. Pathogenesis of Immunological Disorders in Endometrium

https://doi.org/10.31550/1727-2378-2022-21-1-21-26

Abstract

Study Objective: To broaden the understanding of the immunological aspects of implantation incompetence of endometrium in patients with repeated implant failures (RIF) in in vitro fertilisation programs.

Study Design: Open perspective comparative study.

Materials and Methods. 57 women aged 27 to 42 years old (mean age: 36 ± 6.2 years old) with clinically verified RIF. A morphological control group included 30 fertile women with a history of at least 2 deliveries of full-term healthy children and without fertility disorders, who signed a voluntary informed consent to take part in the study. The subject of the study was endometrium biopsy material obtained on day 8–10 of menstruation (middle stage of the proliferation phase).

Study Results. In this study, endometrium biopsy material of patients with RIF demonstrated statistically significant (p < 0.05) changes in the middle stage of the proliferation phase: 1.9- and 1.5-fold increase in CD56+ and CD8+ expression, respectively; 2.2-fold reduction in CD4+ expression, and impaired CD8+/CD4+ ratio (increase in CD8+) vs morphological controls.

Conclusion. Pathogenesis of implantation incompetence in patients with RIF is caused by immunological imbalance in endometrial stroma, the substrate of which is insufficient concentrations of proangiogenic NK-cells, regulatory suppressive Т-helpers, and increased density of the cytotoxic NK- and Т-cells; it forms two primary parts of pathogenesis: reduced immunological tolerance to semiallogenic blastocyte and impaired normal angiogenesis in endometrial stroma of women with RIF.

About the Authors

L. M. Mikhaleva
A.P. Avtsyn Research Institute of Human Morphology
Russian Federation

3 Tsyurupa Str., Moscow, 117418 



M. R. Orazov
Peoples’ Friendship University of Russia (a Federal Government Autonomous Educational Institution of Higher Education)
Russian Federation

6 Miklouho-Maclay Str., Moscow, 117198 



E. S. Silantieva
Mother and Child
Russian Federation

2 Mozhayskoye Shosse, Moscow, 143081 



D. P. Kamilova
Mother and Child
Russian Federation

2 Mozhayskoye Shosse, Moscow, 143081 



K. Yu. Midiber
A.P. Avtsyn Research Institute of Human Morphology ; Peoples’ Friendship University of Russia (a Federal Government Autonomous Educational Institution of Higher Education)
Russian Federation

3 Tsyurupa Str., Moscow, 117418 

6 Miklouho-Maclay Str., Moscow, 117198 



R. E. Orekhov
Peoples’ Friendship University of Russia (a Federal Government Autonomous Educational Institution of Higher Education)
Russian Federation

6 Miklouho-Maclay Str., Moscow, 117198 



References

1. Pathare A.D.S., Zaveri K., Hinduja I. Downregulation of genes related to immune and inflammatory response in IVF implantation failure cases under controlled ovarian stimulation. Am. J. Reprod. Immunol. 2017; 78(1): e12679. DOI: 10.1111/aji.12679

2. Tsypurdeeva N.D., Kogan I.Yu., Savicheva A.M. et al. Characteristics of endometrium microsite in patients with a history of inefficient in vitro fertilisation attempts and chronic endometritis. Journal of Obstetrics and Women's Diseases. 2016; 65S: 27–8. (in Russian)

3. Lédée N., Petitbarat M., Chevrier L. et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am. J. Reprod. Immunol. 2016; 75(3): 388–401. Doi: 10.1111/aji.12483

4. Comins-Boo A., García-Segovia A., del Prado N.N. et al. Evidencebased update: immunological evaluation of recurrent implantation failure. Reprod. Immunol. Open Acc. 2016; 1(4): 24. DOI: 10.4172/2476-1974.100024

5. Orazov M.R., Orekhov R.E., Kamilova D.P. et al. Secrets of pathogenesis in repeated implantation failure. Difficult Patient. 2020; 18(4): 43–8. (in Russian). DOI: 10.24411/2074-1995-2020-10030

6. Hashimoto T., Koizumi M., Doshida M. et al. Efficacy of the endometrial receptivity array for repeated implantation failure in Japan: a retrospective, two-centers study. Reprod. Med. Biol. 2017; 16(3): 290–6. DOI: 10.1002/rmb2.12041

7. Franasiak J.M., Scott R.T. Contribution of immunology to implantation failure of euploid embryos. Fertil. Steril. 2017; 107(6): 1279–83. DOI: 10.1016/j.fertnstert.2017.04.019

8. Garcia-Velasco J.A. Introduction: immunology and assisted reproductive technology in the 21st century. Fertil. Steril. 2017; 107(6): 1267–8. DOI: 10.1016/j.fertnstert.2017.04.017

9. Shi C., Shen H., Fan L.J. et al. Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin. Med. J. (Engl). 2017; 130(5): 566–73. DOI: 10.4103/0366-6999.200550

10. Aylamazyan E.K., Tolibova G.Kh., Tral T.G. et al. New approaches to the estimation of endometrial dysfunction. Journal of Obstetrics and Women's Diseases. 2017; 66(3): 8–15. (in Russian). DOI: 10.17816/JOWD6638-15

11. Dekel N., Gnainsky Y., Granot I. et al. The role of inflammation for a successful implantation. Am. J. Reprod. Immunol. 2014; 72(2): 141–7. DOI: 10.1111/aji.12266

12. Piccinni M.P., Lombardelli L., Logiodice F. et al. T helper cell mediated-tolerance towards fetal allograft in successful pregnancy. Clin. Mol. Allergy. 2015; 13(1): 9. DOI: 10.1186/s12948-015-0015-y

13. Huang J., Qin H., Yang Y. et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017; 153(6): 749–58. DOI: 10.1530/REP-16-0574

14. Gong Q., Zhu Y., Pang N. et al. Increased levels of CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells, and associated factors Bcl-6, CXCR5, IL-21 and IL-6 contribute to repeated implantation failure. Exp. Ther. Med. 2017; 14(6): 5931–41. DOI: 10.3892/etm.2017.5334

15. Tuckerman E., Mariee N., Prakash A. et al. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J. Reprod. Immunol. 2010; 87(1–2): 60–6. DOI: 10.1016/j.jri.2010.07.001

16. Laird S.M., Tuckerman E.M., Cork B.A. et al. A review of immune cells and molecules in women with recurrent miscarriage. Hum. Reprod. Update. 2003; 9(2): 163–74. DOI: 10.1093/humupd/dmg013

17. Kwak-Kim J., Gilman-Sachs A. Clinical implication of natural killer cells and reproduction. Am. J. Reprod. Immunol. 2008; 59(5): 388– 400. DOI: 10.1111/j.1600-0897.2008.00596.x

18. Junovich G., Azpiroz A., Incera E. et al. Endometrial CD16(+) and CD16(–) NK cell count in fertility and unexplained infertility. Am. J. Reprod. Immunol. 2013; 70(3): 182–9. DOI: 10.1111/aji.12132

19. Carlino C., Stabile H., Morrone S. et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood. 2008; 111(6): 3108–15. DOI: 10.1182/blood-2007-08-105965

20. Vacca P., Vitale C., Montaldo E. et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl. Acad. Sci. USA. 2011; 108(6): 2402–7. DOI: 10.1073/pnas.1016257108

21. Wood K.J., Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 2003; 3(3): 199–210. DOI: 10.1038/nri1027

22. Sakaguchi S., Yamaguchi T., Nomura T. et al. Regulatory T cells and immune tolerance. Cell. 2008; 133(5): 775–87. DOI: 10.1016/j.cell.2008.05.009

23. Bilate A.M., Lafaille J.J. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu. Rev. Immunol. 2012; 30: 733–58. DOI: 10.1146/annurev-immunol-020711-075043

24. Wing K., Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 2010; 11(1): 7–13. DOI: 10.1038/ni.1818

25. Somerset D.A., Zheng Y., Kilby M.D. et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004; 112(1): 38–43. DOI: 10.1111/j.1365-2567.2004.01869.x

26. Santner-Nanan B., Peek M.J., Khanam R. et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 2009; 183(11): 7023–30. DOI: 10.4049/jimmunol.0901154

27. Aluvihare V.R., Kallikourdis M., Betz A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 2004; 5(3): 266– 71. DOI: 10.1038/ni1037

28. Kahn D.A., Baltimore D. Pregnancy induces a fetal antigen-specific maternal T regulatory cell response that contributes to tolerance. Proc. Natl. Acad. Sci. USA. 2010; 107(20): 9299–304. DOI: 10.1073/pnas.1003909107

29. Rowe J.H., Ertelt J.M., Xin L. et al. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012; 490(7418): 102–6. DOI: 10.1038/nature11462

30. Wang W.J., Liu F.J., Zhang X. et al. Periodic elevation of regulatory T cells on the day of embryo transfer is associated with better in vitro fertilization outcome. J. Reprod. Immunol. 2017; 119: 49–53. DOI: 10.1016/j.jri.2017.01.002


Review

For citations:


Mikhaleva L.M., Orazov M.R., Silantieva E.S., Kamilova D.P., Midiber K.Yu., Orekhov R.E. Repeated Implant Failures. Pathogenesis of Immunological Disorders in Endometrium. Title. 2022;21(1):21-26. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-1-21-26

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)