Repeated Implant Failures. Pathogenesis of Immunological Disorders in Endometrium
https://doi.org/10.31550/1727-2378-2022-21-1-21-26
Abstract
Study Objective: To broaden the understanding of the immunological aspects of implantation incompetence of endometrium in patients with repeated implant failures (RIF) in in vitro fertilisation programs.
Study Design: Open perspective comparative study.
Materials and Methods. 57 women aged 27 to 42 years old (mean age: 36 ± 6.2 years old) with clinically verified RIF. A morphological control group included 30 fertile women with a history of at least 2 deliveries of full-term healthy children and without fertility disorders, who signed a voluntary informed consent to take part in the study. The subject of the study was endometrium biopsy material obtained on day 8–10 of menstruation (middle stage of the proliferation phase).
Study Results. In this study, endometrium biopsy material of patients with RIF demonstrated statistically significant (p < 0.05) changes in the middle stage of the proliferation phase: 1.9- and 1.5-fold increase in CD56+ and CD8+ expression, respectively; 2.2-fold reduction in CD4+ expression, and impaired CD8+/CD4+ ratio (increase in CD8+) vs morphological controls.
Conclusion. Pathogenesis of implantation incompetence in patients with RIF is caused by immunological imbalance in endometrial stroma, the substrate of which is insufficient concentrations of proangiogenic NK-cells, regulatory suppressive Т-helpers, and increased density of the cytotoxic NK- and Т-cells; it forms two primary parts of pathogenesis: reduced immunological tolerance to semiallogenic blastocyte and impaired normal angiogenesis in endometrial stroma of women with RIF.
About the Authors
L. M. MikhalevaRussian Federation
3 Tsyurupa Str., Moscow, 117418
M. R. Orazov
Russian Federation
6 Miklouho-Maclay Str., Moscow, 117198
E. S. Silantieva
Russian Federation
2 Mozhayskoye Shosse, Moscow, 143081
D. P. Kamilova
Russian Federation
2 Mozhayskoye Shosse, Moscow, 143081
K. Yu. Midiber
Russian Federation
3 Tsyurupa Str., Moscow, 117418
6 Miklouho-Maclay Str., Moscow, 117198
R. E. Orekhov
Russian Federation
6 Miklouho-Maclay Str., Moscow, 117198
References
1. Pathare A.D.S., Zaveri K., Hinduja I. Downregulation of genes related to immune and inflammatory response in IVF implantation failure cases under controlled ovarian stimulation. Am. J. Reprod. Immunol. 2017; 78(1): e12679. DOI: 10.1111/aji.12679
2. Tsypurdeeva N.D., Kogan I.Yu., Savicheva A.M. et al. Characteristics of endometrium microsite in patients with a history of inefficient in vitro fertilisation attempts and chronic endometritis. Journal of Obstetrics and Women's Diseases. 2016; 65S: 27–8. (in Russian)
3. Lédée N., Petitbarat M., Chevrier L. et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am. J. Reprod. Immunol. 2016; 75(3): 388–401. Doi: 10.1111/aji.12483
4. Comins-Boo A., García-Segovia A., del Prado N.N. et al. Evidencebased update: immunological evaluation of recurrent implantation failure. Reprod. Immunol. Open Acc. 2016; 1(4): 24. DOI: 10.4172/2476-1974.100024
5. Orazov M.R., Orekhov R.E., Kamilova D.P. et al. Secrets of pathogenesis in repeated implantation failure. Difficult Patient. 2020; 18(4): 43–8. (in Russian). DOI: 10.24411/2074-1995-2020-10030
6. Hashimoto T., Koizumi M., Doshida M. et al. Efficacy of the endometrial receptivity array for repeated implantation failure in Japan: a retrospective, two-centers study. Reprod. Med. Biol. 2017; 16(3): 290–6. DOI: 10.1002/rmb2.12041
7. Franasiak J.M., Scott R.T. Contribution of immunology to implantation failure of euploid embryos. Fertil. Steril. 2017; 107(6): 1279–83. DOI: 10.1016/j.fertnstert.2017.04.019
8. Garcia-Velasco J.A. Introduction: immunology and assisted reproductive technology in the 21st century. Fertil. Steril. 2017; 107(6): 1267–8. DOI: 10.1016/j.fertnstert.2017.04.017
9. Shi C., Shen H., Fan L.J. et al. Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin. Med. J. (Engl). 2017; 130(5): 566–73. DOI: 10.4103/0366-6999.200550
10. Aylamazyan E.K., Tolibova G.Kh., Tral T.G. et al. New approaches to the estimation of endometrial dysfunction. Journal of Obstetrics and Women's Diseases. 2017; 66(3): 8–15. (in Russian). DOI: 10.17816/JOWD6638-15
11. Dekel N., Gnainsky Y., Granot I. et al. The role of inflammation for a successful implantation. Am. J. Reprod. Immunol. 2014; 72(2): 141–7. DOI: 10.1111/aji.12266
12. Piccinni M.P., Lombardelli L., Logiodice F. et al. T helper cell mediated-tolerance towards fetal allograft in successful pregnancy. Clin. Mol. Allergy. 2015; 13(1): 9. DOI: 10.1186/s12948-015-0015-y
13. Huang J., Qin H., Yang Y. et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017; 153(6): 749–58. DOI: 10.1530/REP-16-0574
14. Gong Q., Zhu Y., Pang N. et al. Increased levels of CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells, and associated factors Bcl-6, CXCR5, IL-21 and IL-6 contribute to repeated implantation failure. Exp. Ther. Med. 2017; 14(6): 5931–41. DOI: 10.3892/etm.2017.5334
15. Tuckerman E., Mariee N., Prakash A. et al. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J. Reprod. Immunol. 2010; 87(1–2): 60–6. DOI: 10.1016/j.jri.2010.07.001
16. Laird S.M., Tuckerman E.M., Cork B.A. et al. A review of immune cells and molecules in women with recurrent miscarriage. Hum. Reprod. Update. 2003; 9(2): 163–74. DOI: 10.1093/humupd/dmg013
17. Kwak-Kim J., Gilman-Sachs A. Clinical implication of natural killer cells and reproduction. Am. J. Reprod. Immunol. 2008; 59(5): 388– 400. DOI: 10.1111/j.1600-0897.2008.00596.x
18. Junovich G., Azpiroz A., Incera E. et al. Endometrial CD16(+) and CD16(–) NK cell count in fertility and unexplained infertility. Am. J. Reprod. Immunol. 2013; 70(3): 182–9. DOI: 10.1111/aji.12132
19. Carlino C., Stabile H., Morrone S. et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood. 2008; 111(6): 3108–15. DOI: 10.1182/blood-2007-08-105965
20. Vacca P., Vitale C., Montaldo E. et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl. Acad. Sci. USA. 2011; 108(6): 2402–7. DOI: 10.1073/pnas.1016257108
21. Wood K.J., Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 2003; 3(3): 199–210. DOI: 10.1038/nri1027
22. Sakaguchi S., Yamaguchi T., Nomura T. et al. Regulatory T cells and immune tolerance. Cell. 2008; 133(5): 775–87. DOI: 10.1016/j.cell.2008.05.009
23. Bilate A.M., Lafaille J.J. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu. Rev. Immunol. 2012; 30: 733–58. DOI: 10.1146/annurev-immunol-020711-075043
24. Wing K., Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 2010; 11(1): 7–13. DOI: 10.1038/ni.1818
25. Somerset D.A., Zheng Y., Kilby M.D. et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004; 112(1): 38–43. DOI: 10.1111/j.1365-2567.2004.01869.x
26. Santner-Nanan B., Peek M.J., Khanam R. et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 2009; 183(11): 7023–30. DOI: 10.4049/jimmunol.0901154
27. Aluvihare V.R., Kallikourdis M., Betz A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 2004; 5(3): 266– 71. DOI: 10.1038/ni1037
28. Kahn D.A., Baltimore D. Pregnancy induces a fetal antigen-specific maternal T regulatory cell response that contributes to tolerance. Proc. Natl. Acad. Sci. USA. 2010; 107(20): 9299–304. DOI: 10.1073/pnas.1003909107
29. Rowe J.H., Ertelt J.M., Xin L. et al. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012; 490(7418): 102–6. DOI: 10.1038/nature11462
30. Wang W.J., Liu F.J., Zhang X. et al. Periodic elevation of regulatory T cells on the day of embryo transfer is associated with better in vitro fertilization outcome. J. Reprod. Immunol. 2017; 119: 49–53. DOI: 10.1016/j.jri.2017.01.002
Review
For citations:
Mikhaleva L.M., Orazov M.R., Silantieva E.S., Kamilova D.P., Midiber K.Yu., Orekhov R.E. Repeated Implant Failures. Pathogenesis of Immunological Disorders in Endometrium. Title. 2022;21(1):21-26. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-1-21-26