Preview

Title

Advanced search

Obesity and COVID-19: Insights from Two Pandemic

https://doi.org/10.31550/1727-2378-2022-21-2-59-66

Abstract

Objective of the Review: To present the pathophysiological mechanisms of the coronavirus infection in obese patients, and approaches to obesity correction in this group of patients following an overview of large randomized clinical trials of cardiovascular safety from PubMed, Cochrane Library, Google Scholar.

Key Points. Clinical trials have demonstrated that obesity is a significant risk factor of a number of comorbidities, including severe and fatal cases of the novel coronavirus infection. A higher prevalence and severity of the novel coronavirus infection in obese patients is caused by a set of factors, with the most significant factor being an increased cardiovascular risk, including tendency to blood-clotting, reduced respiratory efficiency, impaired immune response, and chronic inflammations. Main groups of medicinal products that can be used to manage lipotoxicity have been listed.

Conclusion. It has been proven that a range of positive effects from new antihyperglycemic agents (glucagon-like peptide-1 receptor agonists and sodium-glucose linked transporter-2 inhibitors), combined with a well-studied efficiency and safety profile, is a new method to manage obesity during the coronavirus pandemic.

About the Authors

Yu. Sh. Khalimov
S.M. Kirov Military Medical Academy (a Federal Government-funded Military Educational Institution of Higher Education)
Russian Federation


P. V. Agafonov
S.M. Kirov Military Medical Academy (a Federal Government-funded Military Educational Institution of Higher Education)
Russian Federation


E. B. Kireeva
S.M. Kirov Military Medical Academy (a Federal Government-funded Military Educational Institution of Higher Education)
Russian Federation


Yu. V. Orlov
S.M. Kirov Military Medical Academy (a Federal Government-funded Military Educational Institution of Higher Education)
Russian Federation


References

1. Ng M., Fleming T., Robinson M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014; 384(9945): 766–81. DOI: 10.1016/S0140-6736(14)60460-8

2. Муромцева Г.А., Концевая А.В., Константинов В.В. и др. Распространенность факторов риска неинфекционных заболеваний в российской популяции в 2012–2013 гг. Результаты исследования ЭССЕ-РФ. Кардиоваскулярная терапия и профилактика. 2014; 13(6): 4–11. [Muromtseva G.A., Kontsevaya A.V., Konstantinov V.V. et al. The prevalence of non-infectious diseases risk factors in Russian population in 2012–2013 years. The results of ECVD-RF. Cardiovascular Therapy and Prevention. 2014; 13(6): 4–11. (in Russian)]. DOI: 10.15829/1728-8800-2014-6-4-11

3. Groenhof T.K.J., Lely A.T., Haitjema S. et al. Evaluating a cardiovascular disease risk management care continuum within a learning healthcare system: a prospective cohort study. BJGP Open. 2020; 4(5): bjgpopen20X101109. DOI: 10.3399/bjgpopen20X101109

4. Louie J.K., Acosta M., Winter K. et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA. 2009; 302(17): 1896–902. DOI: 10.1001/jama.2009.1583

5. Rajgor D.D., Lee M.H., Archuleta S. et al. The many estimates of the COVID-19 case fatality rate. Lancet Infect. Dis. 2020; 20(7): 776–7. DOI: 10.1016/S1473-3099(20)30244-9

6. Fischer F., Raiber L., Boscher C. et al. COVID-19 and the elderly: who cares? Front. Public Health. 2020; 8: 151. DOI: 10.3389/fpubh.2020.00151

7. Singh A.K., Gupta R., Misra A. Comorbidities in COVID-19: outcomes in hypertensive cohort and con-troversies with renin angiotensin system blockers. Diabetes Metab. Syndr. 2020; 14(4): 283–7. DOI: 10.1016/j.dsx.2020.03.016

8. Sattar N., McInnes I.B., McMurray J.J.V. Obesity is a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation. 2020; 142(1): 4–6. DOI: 10.1161/CIRCULATIONAHA.120.047659

9. Hales C.M., Fryar C.D., Carroll M.D. et al. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age. 2007–2008 to 2015–2016. J. Am. Med. Assoc. 2018; 319(16): 1723–5. DOI: 10.1001/jama.2018.3060

10. Simonnet A., Chetboun M., Poissy J. et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020; 28(7): 1195–9. DOI: 10.1002/oby.22831

11. Stefan N., Birkenfeld A.L., Schulze M.B. et al. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020; 16(7): 341–2. DOI: 10.1038/s41574-020-0364-6

12. Carrillo J.L.M., Del Campo J.O.M., Coronado O.G. et al. Adipose tissue and inflammation. In: Szablewski L., ed. Adipose tissue. London: IntechOpen; 2018. DOI: 10.5772/intechopen.74227

13. Dobner J., Kaser S. Body mass index and the risk of infection — from underweight to obesity. Clin. Microbiol. Infect. 2018; 24(1): 24–8. DOI: 10.1016/j.cmi.2017.02.013

14. Liu X., Wang H., Shi S. et al. Association between IL-6 and severe disease and mortality in COVID-19 disease: a systematic review and meta analysis. Postgrad. Med. J. 2021: postgradmedj-2021-139939. DOI: 10.1136/postgradmedj-2021-139939

15. Романцова Т.И., Сыч Ю.П. Иммунометаболизм и метавоспаление при ожирении. Ожирение и метаболизм. 2019; 16(4): 3–17. [Romantsova T.R., Sych Yu.P. Immunometabolism and metainflammation in obesity. Obesity and Metabolism. 2019; 16(4): 3–17. (in Russian)]. DOI: 10.14341/omet12218

16. Bowers E., Singer K. Obesity-induced inflammation: the impact of the hematopoietic stem cell niche. JCI Insight. 2021; 6(3): e145295. DOI: 10.1172/jci.insight.145295

17. Cai S., Liao W., Chen S.-W. et al. Association between obesity and clinical prognosis in patients infected with SARS-CoV-2. Infect. Dis. Poverty. 2020; 9(1): 80. DOI: 10.1186/s40249-020-00703-5

18. Khan A.S., Hichami A., Khan N.A. Obesity and COVID-19: oro-naso-sensory perception. J. Clin. Med. 2020; 9(7): 2158. DOI: 10.3390/jcm9072158

19. Powell-Wiley T.M., Poirier P., Burke L.E. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021; 143(21): e984–1010. DOI: 10.1161/CIR.0000000000000973

20. Чумакова Г.А., Веселовская Н.Г. Методы оценки висцерального ожирения в клинической практике. Российский кардиологический журнал. 2016; 21(4): 89–96. [Chumakova G.A., Veselovskaya N.G. Methods of visceral obesity assessment in clinical practice. Russian Journal of Cardiology. 2016; 21(4): 89–96. (in Russian)]. DOI: 10.15829/1560-4071-2016-4-89-96

21. Панова Е.И., Пиманкина М.С. Коронавирусная инфекция у пациента с ожирением (обзор литературы). Архивъ внутренней медицины. 2021; 11(3): 209–16. [Panova E.I., Pimankina M.S. Coronavirus infection an obese patient (literature review). The Russian Archives of Internal Medicine. 2021; 11(3): 209–16. (in Russian)]. DOI: 10.20514/2226-6704-2021-11-3-209-216

22. Шатунова П.О., Быков А.С., Свитич О.А. и др. Ангиотензин-превращающий фермент 2. Подходы к патогенетической терапии COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97(4): 339–45. [Shatunova P.O., Bykov A.S., Svitich O.A. et al. Angiotensin-converting enzyme 2. Approaches to pathogenetic therapy of COVID-19. Journal of Microbiology, Epidemiology and Immunobiology. 2020; 97(4): 339–45. (in Russian)]. DOI: 10.36233/0372-9311-2020-97-4-6

23. Yu J., Chai P., Ge S. et al. Recent understandings toward coronavirus disease 2019 (COVID-19): from bench to bedside. Front. Cell Dev. Biol. 8: 476. DOI: 10.3389/fcell.2020.00476

24. Malavazos A.E., Corsi Romanelli M.M., Bandera F. et al. Targeting the adipose tissue in COVID-19. Obesity (Silver Spring). 2020; 28(7): 1178–9. DOI: 10.1002/oby.22844

25. Peng Y.D., Meng K., Guan H.Q. et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48(6): 450–5. DOI: 10.3760/cma.j.cn112148-20200220-00105

26. Barale C., Russo I. Influence of cardiometabolic risk factors on platelet function. Int. J. Mol. Sci. 2020; 21(2): 623. DOI: 10.3390/ijms21020623

27. Glise Sandblad K., Jern S., Åberg M. et al. Obesity in adolescent men increases the risk of venous thromboembolism in adult life. J. Intern. Med. 2020; 287: 734–45. DOI: 10.1111/joim.13044

28. Бойков В.А., Кобякова О.С., Деев И.А. и др. Состояние функции внешнего дыхания у пациентов с ожирением. Бюллетень сибирской медицины. 2013; 12(1): 86–92. [Boykov V.A., Kobyakova O.S., Deyev I.A. et al. State of respiratory function in patients with obesity. Bulletin of Siberian Medicine. 2013; 12(1): 86–92. (in Russian)]. DOI: 10.20538/1682-0363-2013-1-86-92

29. Бочкарев М.В., Коростовцева Л.С., Фильченко И.А. и др. Жалобы на нарушения дыхания во сне и факторы риска сердечно-сосудистых заболеваний в регионах России: данные исследования ЭССЕ-РФ. Российский кардиологический журнал. 2018; 6: 152–8. [Bochkarev M.V., Korostovtseva L.S., Filchenko I.A. et al. Complaints on sleep breathing disorder and cardiovascular risk factors in Russian regions: data from ESSE-RF study. Russian Journal of Cardiology. 2018; 6: 152–8. (in Russian)]. DOI: 10.15829/1560-4071-2018-6-152-158

30. Iacobellis G. COVID-19 and diabetes: can DPP4 inhibition play a role? Diabetes Res. Clin. Pract. 2020; 26: 108125. DOI: 10.1016/j.diabres.2020.108125

31. Alshanwani A., Kashour T., Badr A. Anti-diabetic drugs GLP-1 agonists and DPP-4 inhibitors may represent potential therapeutic approaches for COVID-19. Endocr. Metab. Immune Disord. Drug Targets. 2021. DOI: 10.2174/1871530321666210809153558

32. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846–8. DOI: 10.1007/s00134-020-05991-x

33. Walhin J.-P., Chen Y.-C., Hengist A. et al. The effects of different forms of daily exercise on metabolic function following short-term overfeeding and reduced physical activity in healthy young men: study protocol for a randomised controlled trial. Trials. 2018; 19(1): 199. DOI: 10.1186/s13063-018-2579-6

34. Palaiodimos L., Kokkinidis D.G., Li W. et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020; 108: 154262. DOI: 10.1016/j.metabol.2020.154262

35. Baldini I., Casagrande B.P., Estadella D. Depression and obesity among females, are sex specificities considered? Arch. Womens Ment. Health. 2021; 24(6): 851–66. DOI: 10.1007/s00737-021-01123-6

36. Pedersen B.K. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur. J. Clin. Invest. 2017; 47(8): 600–11. DOI: 10.1111/eci.12781

37. Rauber F., Da Costa Louzada M.L., Steele E.M. et al. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients. 2018; 10(5): 587. DOI: 10.3390/nu10050587

38. Silva D.A.S., Tremblay M.S., Marinho F. et al. Physical inactivity as a risk factor for all-cause mortality in Brazil (1990–2017). Popul. Health Metr. 2020; 18(suppl.1): S13. DOI: 10.1186/s12963-020-00214-3

39. Mosavat M., Mirsanjari M., Arabiat D. et al. The role of sleep curtailment on leptin levels in obesity and diabetes mellitus. Obes. Facts. 2021; 14(2): 214–21. DOI: 10.1159/000514095

40. Fricchione G.L. The challenge of stress-related non-communicable diseases. Med. Sci. Monit. Basic Res. 2018; 24: 93–5. DOI: 10.12659/MSMBR.911473

41. Villar-Fincheira P., Sanhueza-Olivares F., Norambuena-Soto I. et al. Role of interleukin-6 in vascular health and disease. Front. Mol. Biosci. 2021; 8: 641734. DOI: 10.3389/fmolb.2021.641734

42. Alexopoulos N., Melek B.H., Arepalli C.D. et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J. Am. Coll. Cardiol. 2013; 61: 1956–61. DOI: 10.1016/j.jacc.2012.12.051

43. Fedson D.S. Treating influenza with statins and other immune-modulatory agents. Antivir. Res. 2013; 99(3): 417–35. DOI: 10.1016/j.antiviral.2013.06.018

44. Zeiser R. Immune modulatory effects of statins. Immunology. 2018; 154(1): 69–75. DOI: 10.1111/imm.12902

45. Pryor R., Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem. J. 2015; 471(3): 307–22. DOI: 10.1042/BJ20150497

46. Samuel S.M., Varghese E., Büsselberg D. Therapeutic potential of metformin in COVID-19: reasoning for its protective role. Trends Microbiol. 2021; 29(10): 894–907. DOI: 10.1016/j.tim.2021.03.004

47. Bramante C.T., Buse J., Tamaritz L. et al. Outpatient metformin use is associated with reduced severity of COVID-19 disease in adults with overweight or obesity. J. Med. Virol. 2021; 93(7): 4273–9. DOI: 10.1002/jmv.26873

48. Lu G., Hu Y., Wang Q. et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013; 500(7461): 227–31. DOI: 10.1038/nature12328

49. Rizzo M., Nikolic D., Patti A.M. et al. GLP-1 receptor agonists and reduction of cardiometabolic risk: potential underlying mechanisms. Biochim. Biophys. Acta Mol. Basis Dis. 2018; 1864(9 pt B): 2814–21. DOI: 10.1016/j.bbadis.2018.05.012

50. Rowlands J., Heng J., Newsholme P. et al. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front. Endocrinol. 2018; 9: 672. DOI: 10.3389/fendo.2018.00672

51. Kahkoska A.R., Abrahamsen T.J., Alexander G.C. et al. N3C consortium. association between glucagon-like peptide 1 receptor agonist and sodium-glucose cotransporter 2 inhibitor use and COVID-19 outcomes. Diabetes Care. 2021; 44(7): 1564–72. DOI: 10.2337/dc21-0065

52. Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of type 2 diabetes mellitus and emerging treatment strategies. Diabet. Med. 2009; 26(12): 1185–92. DOI: 10.1111/j.1464-5491.2009.02847.x

53. Xu. L., Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte. 2018; 7(2): 121–8. DOI: 10.1080/21623945.2017.1413516

54. Kosiborod M.N., Esterline R., Furtado R.H.M. et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021; 9(9): 586–94. DOI: 10.1016/S2213-8587(21)00180-7

55. Steenblock S., Schwarz P.E.H., Ludwig B. et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021; 9(11): 786–98. DOI: 10.1016/S2213-8587(21)00244-8


Review

For citations:


Khalimov Yu.Sh., Agafonov P.V., Kireeva E.B., Orlov Yu.V. Obesity and COVID-19: Insights from Two Pandemic. Title. 2022;21(2):59-66. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-2-59-66

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)