Preview

Title

Advanced search

Clinical aspects of a new coronavirus infection

https://doi.org/10.31550/1727-2378-2022-21-2-40-45

Abstract

Objective of the Review: to analyze the available data on the etiology, pathogenesis, diagnosis and treatment of a new coronavirus infection.

Key points. In 2020, the whole world was engulfed by a pandemic of a new viral disease, which was called the coronavirus disease СOVID-19. We have considered aspects of the etiology, pathogenesis, diagnosis, and treatment of this infection. One of the most difficult issues is the therapy of COVID-19, since the course of the disease exacerbates the development of a cytokine storm.

Conclusion. When choosing a patient's treatment tactics, it is necessary to comprehensively assess possible adverse events, strive to minimize their occurrence.

About the Authors

L. Yu. Eliseeva
Privolzhsky State Medical University of the Ministry of Health of the Russian Federation; City Hospital No. 33
Russian Federation


N. Yu. Borovkova
Privolzhsky State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


P. S. Zubeev
Privolzhsky State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


G. N. Zubeeva
Privolzhsky State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Malik Y.A. Properties of coronavirus and SARS-CoV-2. Malays. J. Pathol. 2020; 42(1): 3–11.

2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5(4): 536–44. DOI: 10.1038/s41564-020-0695-z

3. Wan Y., Shang J., Graham R. et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020; 94(7): e00127–20. DOI: 10.1128/jvi.00127-20

4. Успенская Ю.А., Комлева Ю.К., Горина Я.В. и др. Полифункциональность CD147 и новые возможности для диагности ки и терапии. Сибирское медицинское обозрение. 2018; 4: 22–30. [Uspenskaya Yu.A., Komleva Yu.K., Gorina Ya.V. et al. CD147 polyfunctionality and new diagnostic and therapy opportunities. Siberian Medical Review. 2018; 4: 22–30. (in Russian)]. DOI: 10.20333/2500136-2018-4-22-30

5. Warren T.K., Jordan R., Lo M.K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016; 531(7594): 381–5. DOI: 10.1038/nature17180

6. Никифоров В.В., Колобухина Л.В., Сметанина С.В. и др. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. М.; 2020. 48 с. [Nikiforov V.V., Kolobuhina L.V., Smetanina S.V. et al. New coronavirus infection (COVID-19): etiology, epidemiology, clinic, diagnosis, treatment and prevention. M.; 2020. 48 p. (in Russian)]

7. Wang K.E., Chen W., Zhang Z. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020; 5(1): 1–10. DOI: 10.1038/s41392-020-00426-x

8. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Сell. 2020; 181(2): 271–80.e8. DOI: 10.1016/j.cell.2020.02.052

9. Беляков Н.А., Рассохин В.В., Ястребова Е.Б.. Коронавирусная инфекция COVID-19. Природа вируса, патогенез, клинические проявления. Сообщение 1. ВИЧ-инфекция и иммуносупрессии. 2020; 12(1): 7–21. [Belyakov N.A., Rassohin V.V., Yastrebova E.B. Coronavirus infectious disease COVID-19. Nature of virus, pathogenesis, clinical manifestations. Report 1. HIV Infection and Immunosuppressive Disorders. 2020; 12(1): 7–21. (in Russian)]. DOI: 10.22328/2077-9828-2020-12-1-7-21

10. Tisoncik J.R., Korth M.J., Simmons C.P. et al. Into the eye of the cytokine storm. Microbi. Mol. Biol. Rev. 2012; 76(1): 16–32. DOI: 10.1128/MMBR.05015-11

11. Галкин А.А., Демидова В.С. Центральная роль нейтрофилов в патогенезе синдрома острого повреждения легких (острый респираторный дистресс-синдром). Успехи современной биологии. 2014; 134(4): 377–94. [Galkin A.A., Demidova V.S. The central role of neutrophils in pathogenesis of acute lung injury syndrome (ALI/ ARDS). Biology Bulletin Reviews. 2014; 134(4): 377–94. (In Russian)]

12. Herold S., Steinmueller M., von Wulffen W. et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage expressed TNF-related apoptosis-inducing ligand. J. Exp. Med. 2008; 205(13): 3065–77. DOI: 10.1084/jem.20080201

13. Zheng S., Fan J., Yu F. et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: retrospective cohort study. BMJ. 2020; 369: m1443. DOI: 10.1136/bmj.m1443

14. Wang W., Xu Y., Gao R. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020; 323(18): 1843–4. DOI: 10.1001/jama.2020.3786

15. Гудима Г.О., Хаитов Р.М., Кудлай Д.А. и др. Молекулярно-иммунологические аспекты диагностики, профилактики и лечения коронавирусной инфекции. Иммунология. 2021; 42(3): 198–210. [Gudima G.O., Khaitov R.M., Kudlay D.A. et al. Molecular-immunological aspects of diagnostics, prevention and treatment of coronavirus infection. Immunology. 2021; 42(3): 198–210. (in Russian)]. DOI: 10.33029/0206-4952-2021-42-3-198-210

16. van Kampen J.J., van de Vijver D.A., Fraaij P.L. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 2021; 12(1): 267. DOI: 10.1038/s41467-020-20568-4

17. Long D.R., Gombar S,. Hogan C.A. et al. Occurrence and timing of subsequent severe acute respiratory syndrome coronavirus 2 reverse transcription polymerase chain reaction positivity among initially negative patients. Clin. Infect. Dis. 2021; 72(2): 323–326. DOI: https://doi.org/10.1093/cid/ciaa722

18. Li Q., Guan X., Wu P. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020; 382(13): 1199–1207. DOI: 10.1056/NEJMoa2001316

19. Zhao J., Yuan Q., Wang H. et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis. 2020; 71(16): 2027–34. DOI: 10.1093/cid/ciaa344

20. Kanji J.N., Zelyas N., MacDonald C. et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol. J. 2021; 18(1): 13. DOI: 10.1186/s12985-021-01489-0

21. Khan M.S., Shahid I., Anker S.D. et al. Cardiovascular implications of COVID-19 versus influenza infection: a review. BMC Med. 2020; 18(1): 403. DOI: 10.1186/s12916-020-01816-2

22. Shiraki K., Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020; 209: 107512. DOI: 10.1016/j.pharmthera.2020.107512

23. Joshi S., Parkar J., Ansari A. et al. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021; 102: 501–8. DOI: 10.1016/j.ijid.2020.10.069

24. Ghasemnejad-Berenji M., Pashapour S. Favipiravir and COVID-19: a simplified summary. Drug Res. (Stuttg.). 2021; 71(3): 166–70. DOI: 10.1055/a-1296-7935

25. Pizzorno A., Padey B., Dubois J. et al. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res. 2020; 181: 104878. DOI: 10.1016/j.antiviral.2020.104878

26. Williamson B.N., Feldmann F., Schwarz B. et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020; 585(7824): 273–6. DOI: 10.1038/s41586-020-2423-5

27. Beigel J.H., Tomashek K.M., Dodd L.E. et al. Remdesivir for the treatment of COVID-19 — final report. N. Engl. J. Med. 2020; 383(19): 1813–1826. DOI: 10.1056/NEJMc2022236

28. Ader F., Bouscambert-Duchamp M., Hites M. et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. 2022; 22(2): 209–21. DOI: 10.1016/S1473-3099(21)00485-0

29. Камкин Е.Г. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 14. Временные методические рекомендации М.; 2021. [Kamkin E.G. Prevention, diagnosis and treatment of novel coronavirus infection (COVID-19). Version 14 Interim Guidelines. M.; 2021. (in Russian)]

30. Malin J.J., Suárez I., Priesner V. et al. Remdesivir against COVID-19 and other viral diseases. Clin. Microbiol. Rev. 2020; 34(1): e00162– 20. DOI: 10.1128/CMR.00162-20

31. Pinto D., Park Y.J., Beltramello M. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020; 583(7815): 290–5. DOI: 10.1038/s41586-020-2349-y

32. Gupta A., Gonzalez-Rojas Y., Juarez E. et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 2021; 385(21): 1941–1950. DOI: 10.1056/NEJMoa2107934

33. Brobst B., Borger J. Benefits and risks of administering monoclonal antibody therapy for coronavirus (COVID-19). Treasure Island; 2021.

34. Annane D., Bellissant E., Bollaert P.E. et al. Corticosteroids for treating sepsis in children and adults. Cochrane Database Syst. Rev. 2019; 12(12): :CD002243. DOI: 10.1002/14651858.CD002243.pub4

35. RECOVERY Collaborative Group; Horby P., Lim W.S. et al. Dexamethasone in hospitalized patients with COVID-19 — preliminary report. N. Engl. J. Med. 2020; 384(8): 693–704. DOI: 10.1056/NEJMoa2021436

36. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne J.A., Murthy S. et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020; 324(13): 1330–41. DOI: 10.1001/jama.2020.17023

37. Rana M.A., Siddiqui M.H., Raza S. et al. Incidence of steroid-induced diabetes in COVID-19 patients. Pakistan J. M. Health Sci. 2021; 15(10): 2595–6.

38. Mishra G.P., Mulani J. Corticosteroids for COVID-19: the search for an optimum duration of therapy. Lancet Respir. Med. 2021; 9(1): e8. DOI: 10.1016/S2213-2600(20)30530-0

39. Антонов В.Н., Игнатова Г.Л., Прибыткова О.В. и др. Опыт применения олокизумаба у больных COVID-19. Терапевтический архив. 2020; 92(12): 148–54. [Antonov V.N., Ignatova G.L., Pribytkova O.V. et al. Experience of olokizumab use in COVID-19 patients. Therapeutic Archive. 2020; 92(12): 148–54. (in Russian)]. DOI: 10.26442/0040-3660.2020.12.200522

40. Scheinecker C., Smolen J., Yasothan U. et al. Tocilizumab. Nat. Rev. Drug Dis. 2009; 8(4): 273–4. DOI: 10.1038/nrd2863

41. Mahroum N., Watad A., Bridgewood C. et al. Systematic review and meta-analysis of tocilizumab therapy versus standard of care in over 15,000 COVID-19 pneumonia patients during the first eight months of the pandemic. Int. J. Environ. Res. Public Health. 2021; 18(17): 9149. DOI: 10.3390/ijerph18179149

42. Hermine O., Mariette X., Tharaux P.L. et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern. Med. 2021; 181(1): 32–40. DOI: 10.1001/jamainternmed.2020.6820

43. Kaur U., Chakrabarti S.S., Patel T.K. Renin-angiotensin-aldosterone system blockers and region-specific variations in COVID-19 outcomes: findings from a systematic review and meta-analysis. Ther. Adv. Drug Saf. 2021; 12: 20420986211011345. DOI: 10.1177/20420986211011345

44. Minz M.M., Bansal M., Kasliwal R.R. Statins and SARS-CoV-2 disease: current concepts and possible benefits. Diabetes Metab. Syndr. 2020; 14(6): 2063–2067. DOI: 10.1016/j.dsx.2020.10.021

45. Ganjali S., Bianconi V., Penson P.E. et al. Commentary: statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metabolism. 2020; 113: 154375. DOI: 10.1016/j.metabol.2020.154375

46. Masana L., Correig E., Rodríguez-Borjabad C. et al. Effect of statin therapy on SARS-CoV-2 infection-related mortality in hospitalized patients. Eur. Heart J. Cardiovasc. Pharmacother. 2020; 8(2): 157– 164. DOI: 10.1093/ehjcvp/pvaa128

47. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. DOI: 10.1016/S0140-6736(20)30566-3

48. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020; 75(23): 2950–73. DOI: 10.1016/j.jacc.2020.04.031

49. Poor H.D., Ventetuolo C.E., Tolbert T. et al. COVID-19 critical illness pathophysiology driven by diffuse pulmonary thrombi and pulmonary endothelial dysfunction responsive to thrombolysis. Clin. Transl. Med. 2020; 10(2): e44. DOI: 10.1002/ctm2.44

50. Nägele M.P., Haubner B., Tanner F.C. et al. Endothelial dysfunction in COVID-19: current findings and therapeutic implications. Atherosclerosis. 2020; 314: 58–62. DOI: 10.1016/j.atherosclerosis.2020.10.014

51. Meizlish M.L., Goshua G., Liu Y. et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: a propensity score-matched analysis. Am. J. Hematol. 2021; 96(4): 471–9. DOI: 10.1002/ajh.26102


Review

For citations:


Eliseeva L.Yu., Borovkova N.Yu., Zubeev P.S., Zubeeva G.N. Clinical aspects of a new coronavirus infection. Title. 2022;21(2):40-45. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-2-40-45

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)