Клинические аспекты новой коронавирусной инфекции
https://doi.org/10.31550/1727-2378-2022-21-2-40-45
Аннотация
Цель обзора: провести анализ имеющихся данных об этиологии, патогенезе, диагностике и лечении новой коронавирусной инфекции.
Основные положения. В 2020 г. весь мир охватила пандемия нового вирусного заболевания, получившего название COVID-19. Нами были рассмотрены аспекты этиологии, патогенеза, диагностики, а также лечения данной инфекции. Одним из наиболее сложных вопросов является терапия COVID-19, так как течение заболевания усугубляет развитие цитокинового шторма.
Заключение. При выборе тактики лечения пациента следует всесторонне оценивать возможные неблагоприятные явления, стремясь при этом максимально сократить их частоту.
Об авторах
Л. Ю. ЕлисееваРоссия
Елисеева Людмила Юрьевна — аспирант кафедры госпитальной терапии и общей врачебной практики имени В.Г. Вогралика
603005, г. Нижний Новгород
Н. Ю. Боровкова
Россия
Боровкова Наталья Юрьевна — д. м. н., доцент, профессор кафедры госпитальной терапии и общей врачебной практики имени В.Г. Вогралика
603005, г. Нижний Новгород
П. С. Зубеев
Россия
Зубеев Павел Сергеевич — д. м. н., профессор, заведующий кафедрой скорой медицинской помощи
603005, г. Нижний Новгород
Г. Н. Зубеева
Россия
Зубеева Галина Николаевна — к. м. н., доцент кафедры скорой медицинской помощи
603005, г. Нижний Новгород
Список литературы
1. Malik Y.A. Properties of coronavirus and SARS-CoV-2. Malays. J. Pathol. 2020; 42(1): 3–11.
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5(4): 536–44. DOI: 10.1038/s41564-020-0695-z
3. Wan Y., Shang J., Graham R. et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020; 94(7): e00127–20. DOI: 10.1128/jvi.00127-20
4. Успенская Ю.А., Комлева Ю.К., Горина Я.В. и др. Полифункциональность CD147 и новые возможности для диагности ки и терапии. Сибирское медицинское обозрение. 2018; 4: 22–30. [Uspenskaya Yu.A., Komleva Yu.K., Gorina Ya.V. et al. CD147 polyfunctionality and new diagnostic and therapy opportunities. Siberian Medical Review. 2018; 4: 22–30. (in Russian)]. DOI: 10.20333/2500136-2018-4-22-30
5. Warren T.K., Jordan R., Lo M.K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016; 531(7594): 381–5. DOI: 10.1038/nature17180
6. Никифоров В.В., Колобухина Л.В., Сметанина С.В. и др. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. М.; 2020. 48 с. [Nikiforov V.V., Kolobuhina L.V., Smetanina S.V. et al. New coronavirus infection (COVID-19): etiology, epidemiology, clinic, diagnosis, treatment and prevention. M.; 2020. 48 p. (in Russian)]
7. Wang K.E., Chen W., Zhang Z. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020; 5(1): 1–10. DOI: 10.1038/s41392-020-00426-x
8. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Сell. 2020; 181(2): 271–80.e8. DOI: 10.1016/j.cell.2020.02.052
9. Беляков Н.А., Рассохин В.В., Ястребова Е.Б.. Коронавирусная инфекция COVID-19. Природа вируса, патогенез, клинические проявления. Сообщение 1. ВИЧ-инфекция и иммуносупрессии. 2020; 12(1): 7–21. [Belyakov N.A., Rassohin V.V., Yastrebova E.B. Coronavirus infectious disease COVID-19. Nature of virus, pathogenesis, clinical manifestations. Report 1. HIV Infection and Immunosuppressive Disorders. 2020; 12(1): 7–21. (in Russian)]. DOI: 10.22328/2077-9828-2020-12-1-7-21
10. Tisoncik J.R., Korth M.J., Simmons C.P. et al. Into the eye of the cytokine storm. Microbi. Mol. Biol. Rev. 2012; 76(1): 16–32. DOI: 10.1128/MMBR.05015-11
11. Галкин А.А., Демидова В.С. Центральная роль нейтрофилов в патогенезе синдрома острого повреждения легких (острый респираторный дистресс-синдром). Успехи современной биологии. 2014; 134(4): 377–94. [Galkin A.A., Demidova V.S. The central role of neutrophils in pathogenesis of acute lung injury syndrome (ALI/ ARDS). Biology Bulletin Reviews. 2014; 134(4): 377–94. (In Russian)]
12. Herold S., Steinmueller M., von Wulffen W. et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage expressed TNF-related apoptosis-inducing ligand. J. Exp. Med. 2008; 205(13): 3065–77. DOI: 10.1084/jem.20080201
13. Zheng S., Fan J., Yu F. et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: retrospective cohort study. BMJ. 2020; 369: m1443. DOI: 10.1136/bmj.m1443
14. Wang W., Xu Y., Gao R. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020; 323(18): 1843–4. DOI: 10.1001/jama.2020.3786
15. Гудима Г.О., Хаитов Р.М., Кудлай Д.А. и др. Молекулярно-иммунологические аспекты диагностики, профилактики и лечения коронавирусной инфекции. Иммунология. 2021; 42(3): 198–210. [Gudima G.O., Khaitov R.M., Kudlay D.A. et al. Molecular-immunological aspects of diagnostics, prevention and treatment of coronavirus infection. Immunology. 2021; 42(3): 198–210. (in Russian)]. DOI: 10.33029/0206-4952-2021-42-3-198-210
16. van Kampen J.J., van de Vijver D.A., Fraaij P.L. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 2021; 12(1): 267. DOI: 10.1038/s41467-020-20568-4
17. Long D.R., Gombar S,. Hogan C.A. et al. Occurrence and timing of subsequent severe acute respiratory syndrome coronavirus 2 reverse transcription polymerase chain reaction positivity among initially negative patients. Clin. Infect. Dis. 2021; 72(2): 323–326. DOI: https://doi.org/10.1093/cid/ciaa722
18. Li Q., Guan X., Wu P. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020; 382(13): 1199–1207. DOI: 10.1056/NEJMoa2001316
19. Zhao J., Yuan Q., Wang H. et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis. 2020; 71(16): 2027–34. DOI: 10.1093/cid/ciaa344
20. Kanji J.N., Zelyas N., MacDonald C. et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol. J. 2021; 18(1): 13. DOI: 10.1186/s12985-021-01489-0
21. Khan M.S., Shahid I., Anker S.D. et al. Cardiovascular implications of COVID-19 versus influenza infection: a review. BMC Med. 2020; 18(1): 403. DOI: 10.1186/s12916-020-01816-2
22. Shiraki K., Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020; 209: 107512. DOI: 10.1016/j.pharmthera.2020.107512
23. Joshi S., Parkar J., Ansari A. et al. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021; 102: 501–8. DOI: 10.1016/j.ijid.2020.10.069
24. Ghasemnejad-Berenji M., Pashapour S. Favipiravir and COVID-19: a simplified summary. Drug Res. (Stuttg.). 2021; 71(3): 166–70. DOI: 10.1055/a-1296-7935
25. Pizzorno A., Padey B., Dubois J. et al. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res. 2020; 181: 104878. DOI: 10.1016/j.antiviral.2020.104878
26. Williamson B.N., Feldmann F., Schwarz B. et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020; 585(7824): 273–6. DOI: 10.1038/s41586-020-2423-5
27. Beigel J.H., Tomashek K.M., Dodd L.E. et al. Remdesivir for the treatment of COVID-19 — final report. N. Engl. J. Med. 2020; 383(19): 1813–1826. DOI: 10.1056/NEJMc2022236
28. Ader F., Bouscambert-Duchamp M., Hites M. et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. 2022; 22(2): 209–21. DOI: 10.1016/S1473-3099(21)00485-0
29. Камкин Е.Г. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 14. Временные методические рекомендации М.; 2021. [Kamkin E.G. Prevention, diagnosis and treatment of novel coronavirus infection (COVID-19). Version 14 Interim Guidelines. M.; 2021. (in Russian)]
30. Malin J.J., Suárez I., Priesner V. et al. Remdesivir against COVID-19 and other viral diseases. Clin. Microbiol. Rev. 2020; 34(1): e00162– 20. DOI: 10.1128/CMR.00162-20
31. Pinto D., Park Y.J., Beltramello M. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020; 583(7815): 290–5. DOI: 10.1038/s41586-020-2349-y
32. Gupta A., Gonzalez-Rojas Y., Juarez E. et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 2021; 385(21): 1941–1950. DOI: 10.1056/NEJMoa2107934
33. Brobst B., Borger J. Benefits and risks of administering monoclonal antibody therapy for coronavirus (COVID-19). Treasure Island; 2021.
34. Annane D., Bellissant E., Bollaert P.E. et al. Corticosteroids for treating sepsis in children and adults. Cochrane Database Syst. Rev. 2019; 12(12): :CD002243. DOI: 10.1002/14651858.CD002243.pub4
35. RECOVERY Collaborative Group; Horby P., Lim W.S. et al. Dexamethasone in hospitalized patients with COVID-19 — preliminary report. N. Engl. J. Med. 2020; 384(8): 693–704. DOI: 10.1056/NEJMoa2021436
36. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne J.A., Murthy S. et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020; 324(13): 1330–41. DOI: 10.1001/jama.2020.17023
37. Rana M.A., Siddiqui M.H., Raza S. et al. Incidence of steroid-induced diabetes in COVID-19 patients. Pakistan J. M. Health Sci. 2021; 15(10): 2595–6.
38. Mishra G.P., Mulani J. Corticosteroids for COVID-19: the search for an optimum duration of therapy. Lancet Respir. Med. 2021; 9(1): e8. DOI: 10.1016/S2213-2600(20)30530-0
39. Антонов В.Н., Игнатова Г.Л., Прибыткова О.В. и др. Опыт применения олокизумаба у больных COVID-19. Терапевтический архив. 2020; 92(12): 148–54. [Antonov V.N., Ignatova G.L., Pribytkova O.V. et al. Experience of olokizumab use in COVID-19 patients. Therapeutic Archive. 2020; 92(12): 148–54. (in Russian)]. DOI: 10.26442/0040-3660.2020.12.200522
40. Scheinecker C., Smolen J., Yasothan U. et al. Tocilizumab. Nat. Rev. Drug Dis. 2009; 8(4): 273–4. DOI: 10.1038/nrd2863
41. Mahroum N., Watad A., Bridgewood C. et al. Systematic review and meta-analysis of tocilizumab therapy versus standard of care in over 15,000 COVID-19 pneumonia patients during the first eight months of the pandemic. Int. J. Environ. Res. Public Health. 2021; 18(17): 9149. DOI: 10.3390/ijerph18179149
42. Hermine O., Mariette X., Tharaux P.L. et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern. Med. 2021; 181(1): 32–40. DOI: 10.1001/jamainternmed.2020.6820
43. Kaur U., Chakrabarti S.S., Patel T.K. Renin-angiotensin-aldosterone system blockers and region-specific variations in COVID-19 outcomes: findings from a systematic review and meta-analysis. Ther. Adv. Drug Saf. 2021; 12: 20420986211011345. DOI: 10.1177/20420986211011345
44. Minz M.M., Bansal M., Kasliwal R.R. Statins and SARS-CoV-2 disease: current concepts and possible benefits. Diabetes Metab. Syndr. 2020; 14(6): 2063–2067. DOI: 10.1016/j.dsx.2020.10.021
45. Ganjali S., Bianconi V., Penson P.E. et al. Commentary: statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metabolism. 2020; 113: 154375. DOI: 10.1016/j.metabol.2020.154375
46. Masana L., Correig E., Rodríguez-Borjabad C. et al. Effect of statin therapy on SARS-CoV-2 infection-related mortality in hospitalized patients. Eur. Heart J. Cardiovasc. Pharmacother. 2020; 8(2): 157– 164. DOI: 10.1093/ehjcvp/pvaa128
47. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. DOI: 10.1016/S0140-6736(20)30566-3
48. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020; 75(23): 2950–73. DOI: 10.1016/j.jacc.2020.04.031
49. Poor H.D., Ventetuolo C.E., Tolbert T. et al. COVID-19 critical illness pathophysiology driven by diffuse pulmonary thrombi and pulmonary endothelial dysfunction responsive to thrombolysis. Clin. Transl. Med. 2020; 10(2): e44. DOI: 10.1002/ctm2.44
50. Nägele M.P., Haubner B., Tanner F.C. et al. Endothelial dysfunction in COVID-19: current findings and therapeutic implications. Atherosclerosis. 2020; 314: 58–62. DOI: 10.1016/j.atherosclerosis.2020.10.014
51. Meizlish M.L., Goshua G., Liu Y. et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: a propensity score-matched analysis. Am. J. Hematol. 2021; 96(4): 471–9. DOI: 10.1002/ajh.26102
Рецензия
Для цитирования:
Елисеева Л.Ю., Боровкова Н.Ю., Зубеев П.С., Зубеева Г.Н. Клинические аспекты новой коронавирусной инфекции. Доктор.Ру. 2022;21(2):40-45. https://doi.org/10.31550/1727-2378-2022-21-2-40-45
For citation:
Eliseeva L.Yu., Borovkova N.Yu., Zubeev P.S., Zubeeva G.N. Clinical aspects of a new coronavirus infection. Title. 2022;21(2):40-45. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-2-40-45