Problem of Vitamin D Levels in Obese Children
https://doi.org/10.31550/1727-2378-2022-21-3-45-49
Abstract
Study Objective: To assess the relationship between vitamin D level and bone ultrasonometry and bone metabolism markers in obese children.
Study Design: Prospective controlled trial.
Materials and Methods. We examined obese (study group, n = 31) and normal (control group, n = 40) children aged 4 to 15.
We reviewed medical records of children (form No. 112-1/у-00); conducted physical examination including assessment of physical development; and measured bone density (ultrasound osteodensitometry) and serum 25(ОН)D concentration (chemilumescent analysis).
Study Results. The study group demonstrated statistically significant (р < 0.05) reduction in vitamin D levels and bone density vs controls. All obese children had vitamin D insufficiency or deficit. The deficit of vitamin D was associated with a lower bone density, reduced markers of osseogenesis and increased markers of bone resorption: osteocalcin concentration was 19.8 [14.5; 23.6] ng/mL vs 84.0 [68.9; 102.9] ng/mL in controls (р < 0.001), β-CrossLaps — 2.0 [0.9; 4.2] vs 0,5 [0.3; 0.5] ng/mL (р < 0.001), alkaline phosphatase — 457 [277; 581] vs 262 [232; 453] U/L (р < 0.05).
Conclusion. Paediatric obesity is a risk factor of vitamin D deficit. which, in turn, is a risk factor of osteoporosis. Therefore, prevention of vitamin D deficiency is essential.
About the Authors
A. S. EfremenkovaRussian Federation
28 Krupskaya Str., Smolensk, 214019; 8 12 let Oktyabriya Str., Smolensk, 214012
N. Yu. Krutikova
Russian Federation
28 Krupskaya Str., Smolensk, 214019
References
1. Razina A.O., Runenko S.D., Achkasov E.E. Obesity: current global and russian trends. Annals of the Russian Academy of Medical Sciences. 2016; 71(2): 154–9. (in Russian). DOI: 10.15690/vramn655
2. Klimov L.Y., Zakharova I.N., Kurianinova V.A. et al. Vitamin D deficiency and obesity in children and adolescents: how the two global pandemias are interconnected. Vitamin D role in pathogenesis of obesity and insulin resistance (part 1). Medical Council. 2017; 19: 214–20. (in Russian). DOI: 10.21518/2079-701X-2017-19-214-220
3. Salukhov V.V., Kovalevskaya E.A., Kurbanova V.V. Osteal and extraosteal effects of vitamin D and its opportunities of medication correction of its deficiency. Medical Council. 2018; 4: 90–9. (in Russian). DOI: 10.21518/2079-701X-2018-4-90-99
4. Smykalova A.S. Modern concepts of the role of adipokines in regulation of bone metabolism (literature review). Journal of New Medical Technologies. 2018; 25(1): 44–60. (in Russian). DOI: 10.24411/1609-2163-2018-15962
5. López-Gómez J.J., Pérez Castrillón J.L., de Luis Román D.A. Impact of obesity on bone metabolism. Endocrinol. Nutr. 2016; 63(10): 551–9. DOI: 10.1016/j.endonu.2016.08.005
6. Mohiti-Ardekani J., Soleymani-Salehabadi H., Owlia M.B. et al. Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. 2014; 32(4): 400–4. DOI: 10.1007/s00774-013-0511-4
7. Cildir G., Akincilar S.C., Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol. Med. 2013; 19(8): 487–500. DOI: 10.1016/j.molmed.2013.05.001
8. Abbas M.A. Physiological functions of vitamin D in adipose tissue. J. Steroid Biochem. Mol. Biol. 2017; 165(Pt. B): 369–81. DOI: 10.1016/j.jsbmb.2016.08.004
9. Kong J., Chen Y., Zhu G. et al. 1,25-Dihydroxyvitamin D3 upregulates leptin expression in mouse adipose tissue. J. Endocrinol. 2013; 216(2): 265–71. DOI: 10.1530/JOE-12-0344
10. Koszowska A.U., Nowak J., Dittfeld A. et al. Obesity, adipose tissue function and the role of vitamin D. Cent. Eur. J. Immunol. 2014; 39(2): 260–4. DOI: 10.5114/ceji.2014.43732
11. Nobre J.L., Lisboa P.C., Carvalho J.C. et al. Leptin blocks the inhibitory effect of vitamin D on adipogenesis and cell proliferation in 3T3-L1 adipocytes. Gen. Comp. Endocrinol. 2018; 266: 1–8. DOI: 10.1016/j.ygcen.2018.01.014
12. Karonova T.L., Shmonina I.A., Andreeva A.T. et al. Vitamin D deficiency: the cause or the result of obesity? Consilium Medicum. 2016; 18(4): 49–52. (in Russian). DOI: 10.26442/2075-1753_2016.4.49-52
13. Miraglia del Giudice E., Grandone A., Cirillo G. et al. Bioavailable vitamin D in obese children: the role of insulin resistance. J. Clin. Endocrinol. Metab. 2015; 100(10): 3949–55. DOI: 10.1210/jc.2015-2973
14. Nikitina I.L., Todiyeva A.M., Karonova T.L. Metabolic risks in children with obesity and deficit of vitamin D. Practical Medicine. 2017; 5(106): 48–52. (in Russian).
15. Latic N., Erben R.G. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int. J. Mol. Sci. 2020; 21(18): 6483. DOI: 10.3390/ijms21186483
16. Siller A.F., Whyte M.P. Alkaline phosphatase: discovery and naming of our favorite enzyme. J. Bone Miner. Res. 2018; 33(2): 362–4. Epub. 2017 Aug. 14. DOI: 10.1002/jbmr.3225
17. Zoch M.L., Clemens T.L., Riddle R.C. New insights into the biology of osteocalcin. Bone. 2016; 82: 42–9. Epub. 2015 Jun. 6. DOI: 10.1016/j.bone.2015.05.046
18. Greenblatt M.B., Tsai J.N., Wein M.N. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin. Chem. 2017; 63(2): 464–74. Epub. 2016 Dec. 9. DOI: 10.1373/clinchem.2016.259085
19. Obermayer-Pietsch B., Schwetz V. Biochemical markers of bone metabolism and their importance. Z. Rheumatol. 2016; 75(5): 451–8. DOI: 10.1007/s00393-016-0083-5
20. Han Y., You X., Xing W. et al. Paracrine and endocrine actions of bonethe functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018; 6: 16. DOI: 10.1038/s41413-018-0019-6
21. Efremenkova A.S., Krutikova N.Yu. Pathology of bone tissue in children with endocrine diseases. Medical Newsletter of Vyatka. 2021; 1(69): 81–5. (in Russian). DOI: 10.24411/2220-7880-2021-10158
Review
For citations:
Efremenkova A.S., Krutikova N.Yu. Problem of Vitamin D Levels in Obese Children. Title. 2022;21(3):45-49. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-3-45-49