Breast Milk Oligosaccharides: Their Role in Immune Reactions and Potential Role in Allergy Prevention
https://doi.org/10.31550/1727-2378-2023-22-3-81-88
Abstract
Aim: To describe the known and expected effects of breast milk oligosaccharides (BMOs) on immune system modulation and allergy prevention; to present results of the studies of medicated formulas with the addition of a combination of two BMOs in babies with cow's milk protein allergy (CMPA).
Key Points. The period of infancy is a window of opportunities for allergy prevention. Breast milk contains immune system modulating components, including BMOs, which protect an infant during this critical period. Recently, a number of BMO impacts over immune system maturity have been found, including their ability to modulate microbiota composition, to enhance expression of short-chain fatty acids, to directly bind to pathogenic agents, and to interact with intestinal epithelium and immune cells. In addition, it is assumed that BMOs can be used for prevention of paediatric allergies.
Conclusion. BMOs have a significant contribution to the positive effect of breast milk over a child; they ensure healthy microbial colonisation of intestines, inflammation inhibition, immune protection, and intestinal barrier maturity. Currently BMOs are considered one of the most important bioactive components of breast milk, since they act both as antimicrobials, antiviral agents and modulators of intestinal epithelial cells, as specific prebiotics, intestinal microbiota effectors and immunomodulating factors. Nevertheless, additional studies of the effect of some BMOs and their combinations on clearly defined clinical and immune outcomes are required, including tolerance and therapeutic potential in CMPA.
Keywords
References
1. Meek J.Y., Noble L.; Section on Breastfeeding. Policy statement: breastfeeding and the use of human milk. Pediatrics. 2022;150(1):e2022057988. DOI: 10.1542/peds.2022-057988
2. Sprenger N., Tytgat H.L.P., Binia A., Austin S. et al. Biology of human milk oligosaccharides: from basic science to clinical evidence. J. Hum. Nutr. Diet. 2022;35(2):280–99. DOI: 10.1111/jhn.12990
3. Moubareck C.A. Human milk microbiota and oligosaccharides: a glimpse into benefits, diversity, and correlations. Nutrients. 2021;13(4):1123. DOI: 10.3390/nu13041123
4. Hill D.R., Chow J.M., Buck R.H. Multifunctional benefits of prevalent HMOs: implications for infant health. Nutrients. 2021;13(10):3364. DOI: 10.3390/nu13103364
5. Sankar M.J., Sinha B., Chowdhury R., Bhandari N. et al. Optimal breastfeeding practices and infant and child mortality: a systematic review and meta-analysis. Acta Paediatr. 2015;104(467):3–13. DOI: 10.1111/apa.13147
6. Christensen N., Bruun S., Søndergaard J., Christesen H.T. et al. Breastfeeding and infections in early childhood: a cohort study. Pediatrics. 2020;146(5):e20191892. DOI: 10.1542/peds.2019-1892
7. Matsumoto N., Yorifuji T., Nakamura K., Ikeda M. et al. Breastfeeding and risk of food allergy: a nationwide birth cohort in Japan. Allergol. Int. 2020;69(1):91–7. DOI: 10.1016/j.alit.2019.08.007
8. Bode L. The functional biology of human milk oligosaccharides. Early Hum. Dev. 2015;91(11):619–22. DOI: 10.1016/j.earlhumdev.2015.09.001
9. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–62. DOI: 10.1093/glycob/cws074
10. Kunz C. Historical aspects of human milk oligosaccharides. Adv. Nutr. 2012;3(3):430S–9S. DOI: 10.3945/an.111.001776
11. Kuhn R. Les oligosaccharides du lait [Oligosaccharides of milk]. Bull Soc. Chim. Biol. (Paris). 1958;40(2–3):297–314.
12. Grimmonprez L., Montreuil J. Etude des fractions glycanniques des glycosphingolipides totaux de la membrane des globules lipidiques du lait de femme [The glycan fraction of the total glycosphingolipids of the human milk fat globule membrane]. Biochimie. 1977;59(11– 12):899–907.
13. Zhang B., Li L.Q., Liu F., Wu J.Y. Human milk oligosaccharides and infant gut microbiota: Molecular structures, utilization strategies and immune function. Carbohydr. Polym. 2022;276:118738. DOI: 10.1016/j.carbpol.2021.118738
14. Hahn W.H., Kim J., Song S., Park S. et al. The human milk oligosaccharides are not affected by pasteurization and freezedrying. J. Matern. Fetal Neonatal Med. 2019;32(6):985–91. DOI: 10.1080/14767058.2017.1397122
15. Plows J.F., Berger P.K., Jones R.B., Alderete T.L. et al. Longitudinal changes in human milk oligosaccharides (HMOs) over the course of 24 months of lactation. J. Nutr. 2021;151(4):876–82. DOI: 10.1093/jn/nxaa427
16. Liu S., Cai X., Wang J., Mao Y. et al. Six oligosaccharides' variation in breast milk: a study in South China from 0 to 400 days postpartum. Nutrients. 2021;13(11):4017. DOI: 10.3390/nu13114017
17. Azad M.B., Robertson B., Atakora F., Becker A.B. et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J. Nutr. 2018;148(11):1733–42. DOI: 10.1093/jn/nxy175
18. Garrido D., Kim J.H., German J.B., Raybould H.E. et al. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One. 2011;6(3):e17315. DOI: 10.1371/journal.pone.0017315
19. De Leoz M.L., Kalanetra K.M., Bokulich N.A., Strum J.S. et al. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J. Proteome Res. 2015;14(1):491–502. DOI: 10.1021/pr500759e
20. Donovan S.M., Comstock S.S. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann. Nutr. Metab. 2016;69(suppl.2):S42–51. DOI: 10.1159/000452818
21. Ayechu-Muruzabal V., van Stigt A.H., Mank M., Willemsen L.E.M. et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front. Pediatr. 2018;6:239. DOI: 10.3389/fped.2018.00239
22. Johannes L., Jacob R., Leffler H. Galectins at a glance. J. Cell Sci. 2018;131(9):jcs208884. DOI: 10.1242/jcs.208884
23. Triantis V., Bode L., van Neerven R.J.J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 2018;6:190. DOI: 10.3389/fped.2018.00190
24. Asakuma S., Hatakeyama E., Urashima T., Yoshida E. et al. Physiology of consumption of human milk oligosaccharides by infant gutassociated bifidobacteria. J. Biol. Chem. 2011;286(40):34583–92. DOI: 10.1074/jbc.M111.248138
25. Plöger S., Stumpff F., Penner G.B., Schulzke J.D. et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 2012;1258:52–9. DOI: 10.1111/j.1749-6632.2012.06553.x
26. Reichardt N., Duncan S.H., Young P., Belenguer A. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota [published correction appears in ISME J. 2014;8(6):1352]. ISME J. 2014;8(6):1323–35. DOI: 10.1038/ismej.2014.14
27. Ackerman D.L., Doster R.S., Weitkamp J.H., Aronoff D.M. et al. Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group B Streptococcus. ACS Infect. Dis. 2017;3(8):595–605. DOI: 10.1021/acsinfecdis.7b00064
28. Moore R.E., Xu L.L., Townsend S.D. Prospecting human milk oligosaccharides as a defense against viral infections. ACS Infect. Dis. 2021;7(2):254–63. DOI: 10.1021/acsinfecdis.0c00807
29. Craft K.M., Townsend S.D. Mother knows best: deciphering the antibacterial properties of human milk oligosaccharides. Acc. Chem. Res. 2019;52(3):760–8. DOI: 10.1021/acs.accounts.8b00630
30. Ruiz-Palacios G.M., Cervantes L.E., Ramos P., Chavez-Munguia B. et al. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 2003;278(16):14112–20. DOI: 10.1074/jbc.M207744200
31. Idänpään-Heikkilä I., Simon P.M., Zopf D., Vullo T. et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J. Infect. Dis. 1997;176(3):704–12. DOI: 10.1086/514094
32. Morrow A.L., Ruiz-Palacios G.M., Altaye M., Jiang X. et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 2004;145(3):297–303. DOI: 10.1016/j.jpeds.2004.04.054
33. Lin A.E., Autran C.A., Szyszka A., Escajadillo T. et al. Human milk oligosaccharides inhibit growth of group B Streptococcus. J. Biol. Chem. 2017;292(27):11243–9. DOI: 10.1074/jbc.M117.789974
34. Nolan L.S., Rimer J.M., Good M. The role of human milk oligosaccharides and probiotics on the neonatal microbiome and risk of necrotizing enterocolitis: a narrative review. Nutrients. 2020;12(10):3052. DOI: 10.3390/nu12103052
35. Simon A.K., Hollander G.A., McMichael A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015;282(1821):20143085. DOI: 10.1098/rspb.2014.3085
36. Xiao L., van De Worp W.R., Stassen R., van Maastrigt C. et al. Human milk oligosaccharides promote immune tolerance via direct interactions with human dendritic cells. Eur. J. Immunol. 2019;49(7):1001–14. DOI: 10.1002/eji.201847971
37. Järvinen K.M., Martin H., Oyoshi M.K. Immunomodulatory effects of breast milk on food allergy. Ann. Allergy Asthma Immunol. 2019;123(2):133–43. DOI: 10.1016/j.anai.2019.04.022
38. Aitoro R., Paparo L., Amoroso A., Di Costanzo M. et al. Gut microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients. 2017;9(7):672. DOI: 10.3390/nu9070672
39. Tanaka M., Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017;66(4):515–22. DOI: 10.1016/j.alit.2017.07.010
40. Sprenger N., Odenwald H., Kukkonen A.K., Kuitunen M. et al. FUT2- dependent breast milk oligosaccharides and allergy at 2 and 5 years of age in infants with high hereditary allergy risk. Eur. J. Nutr. 2017;56(3):1293–301. DOI: 10.1007/s00394-016-1180-6
41. Korpela K., Salonen A., Hickman B., Kunz C. et al. Fucosylated oligosaccharides in mother's milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 2018;8(1):13757. DOI: 10.1038/s41598-018-32037-6
42. Zimmermann P., Messina N., Mohn W.W., Finlay B.B. et al. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review. J. Allergy Clin. Immunol. 2019;143(2):467–85. DOI: 10.1016/j.jaci.2018.09.025
43. Sjögren Y.M., Duchén K., Lindh F., Björkstén B. et al. Neutral oligosaccharides in colostrum in relation to maternal allergy and allergy development in children up to 18 months of age. Pediatr. Allergy Immunol. 2007;18(1):20–6. DOI: 10.1111/j.1399-3038.2006.00486.x
44. Seppo A.E., Autran C.A., Bode L., Järvinen K.M. Human milk oligosaccharides and development of cow's milk allergy in infants. J. Allergy Clin. Immunol. 2017;139(2):708–11.e5. DOI: 10.1016/j. jaci.2016.08.031
45. Castillo-Courtade L., Han S., Lee S., Mian F.M. et al. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy. 2015;70(9):1091–102. DOI: 10.1111/all.12650
46. Atochina O., Da'dara A.A., Walker M., Harn D.A. The immunomodulatory glycan LNFPIII initiates alternative activation of murine macrophages in vivo. Immunology. 2008;125(1):111–21. DOI: 10.1111/j.1365-2567.2008.02826.x
47. Miliku K., Robertson B., Sharma A.K., Subbarao P. et al. Human milk oligosaccharide profiles and food sensitization among infants in the CHILD Study. Allergy. 2018;73(10):2070–3. DOI: 10.1111/all.13476
48. Lodge C.J., Lowe A.J., Milanzi E., Bowatte G. et al. Human milk oligosaccharide profiles and allergic disease up to 18 years. J. Allergy Clin. Immunol. 2021;147(3):1041–8. DOI: 10.1016/j.jaci.2020.06.027
49. Koletzko S., Niggemann B., Arato A., Dias J.A. et al. Diagnostic approach and management of cow's-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J. Pediatr. Gastroenterol. Nutr. 2012;55(2):221–9. DOI: 10.1097/MPG.0b013e31825c9482
50. Berger B., Porta N., Foata F., Grathwohl D. et al. Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. mBio. 2020;11(2):e03196–19. DOI: 10.1128/mBio.03196-19
51. Nowak-Wegrzyn A., Czerkies L., Reyes K., Collins B. et al. Confirmed hypoallergenicity of a novel whey-based extensively hydrolyzed infant formula containing two human milk oligosaccharides. Nutrients. 2019;11(7):1447. DOI: 10.3390/nu11071447
52. Vandenplas Y., Żołnowska M., Berni Canani R., Ludman S. et al. Effects of an extensively hydrolyzed formula supplemented with two human milk oligosaccharides on growth, tolerability, safety and infection risk in infants with cow's milk protein allergy: a randomized, multi-center trial. Nutrients. 2022;14(3):530. DOI: 10.3390/nu14030530
53. Gold M.S., Quinn P.J., Campbell D.E., Peake J. et al. Effects of an amino acid-based formula supplemented with two human milk oligosaccharides on growth, tolerability, safety, and gut microbiome in infants with cow's milk protein allergy. Nutrients. 2022;14(11):2297. DOI: 10.3390/nu14112297
Review
For citations:
Mukhametova E.M. Breast Milk Oligosaccharides: Their Role in Immune Reactions and Potential Role in Allergy Prevention. PEDIATRICS. 2023;22(3):81-88. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-3-81-88