Features of the Metabolomic Profile in Newborns with Intrauterine Growth Restriction
https://doi.org/10.31550/1727-2378-2024-23-6-64-69
Abstract
Aim. To analyze the clinical application of metabolomics in intrauterine growth retardation (IUGR), as well as to identify and discuss the most important metabolites and their clinical significance in intrauterine and postnatal growth disorders.
Key points. IUGR determines the health status not only in the neonatal period and early childhood, but also in subsequent life. IUGR is a consequence of various reasons related to maternal health, the influence of environmental factors, genetics, as well as the complications of pregnancy, including multiple pregnancies, placental disorders and anomalies of the umbilical cord. Changes in metabolic processes in the fetal body due to disturbances in intrauterine growth, as well as rational feeding in the neonatal period, largely determine the phenotype of the newborn and the trajectory of further development. Metabolomics, also called “new clinical biochemistry,” is an approach based on the systematic study of the complete set of metabolites in a biological sample. The metabolome reflects the characteristics of the phenotype and takes into account epigenetic differences.
Conclusion. Metabolomics is a relatively new technology, the results of its application in neonatology are few, and it is not yet possible to draw clear conclusions about the role of one or another metabolite in the diagnosis of diseases of the newborn. However, it is already obvious that the study of the metabolomic spectrum provides a theoretical basis for further research into the mechanisms underlying complications associated with IUGR, as well as treatment and prevention measures.
About the Authors
I. I. RyuminaRussian Federation
4 Oparina Str., Moscow, 117997
N. A. Frankevich
Russian Federation
4 Oparina Str., Moscow, 117997
A. P. Gasanbekova
Russian Federation
4 Oparina Str., Moscow, 117997
N. E. Kan
Russian Federation
4 Oparina Str., Moscow, 117997
O. N. Ulyanova
Russian Federation
4 Oparina Str., Moscow, 117997
A. I. Khabibullina
Russian Federation
4 Oparina Str., Moscow, 117997
V. E. Frankevich
Russian Federation
4 Oparina Str., Moscow, 117997; 2 Moskovsky trakt, Tomsk, 634050
References
1. Hales C.N., Barker D.J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601. DOI: 10.1007/BF00400248
2. Bateson P., Barker D., Clutton-Brock T., Deb D. et al. Developmental plasticity and human health. Nature. 2004;430(6998):419–21. DOI: 10.1038/nature02725
3. Barker D.J.P. Mothers, babies, and health in later life. Edinburgh; 1998. URL: https://trove.nla.gov.au/work/7976056 (дата обращения — 15.06.2024).
4. Barker D.J.P. Developmental origins of adult health and disease. J. Epidemiol. Commun. Health. 2004;58:114–15. DOI: 10.1136/jech.58.2.114
5. Weinstein A., Cruz K., Alvarez M., Oladipo A.F. Diagnosis, classification, and management of fetal growth restriction: a practice update. Top. Obstet. Gynecol. 2024;44(4):1–5. DOI: 10.1097/01.PGO.0001007308.72060.91
6. Boghossian N.S., Geraci M., Edwards E.M., Horbar J.D. Morbidity and mortality in small for gestational age infants at 22 to 29 weeks' gestation. Pediatrics. 2018;141(2):e20172533. DOI: 10.1542/peds.2017-2533
7. Lee A.C., Kozuki N., Cousens S., Stevens G.A. et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21st standard: analysis of CHERG datasets. BMJ. 2017;358:j3677. DOI: 10.1136/bmj.j3677
8. Belousova T.V., Andrushina I.V. Intrauterine growth retardation and its impact on health condition. Contemporary feeding approaches for infants. Lechaschi Vrach. 2018;9:50–9. (in Russian)
9. Sharma D., Shastri S., Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med. Insights. Pediatr. 2016;10:67–83. DOI: 10.4137/CMPed.S40070
10. Bliznetsova E.A., Kulakova N.I., Antonova L.K. Modern concepts of intrauterine growth retardation in premature infants (literature review). Upper Volga Medical Journal. 2015;14(4):3–18. (in Russian)
11. Petrova I.N., Trubachev E.A., Kovalenko T.V., Ozhegov A.M. Neonatal cardiovascular system adaptation in babies with intrauterine growth retardation. Russian Bulletin of Perinatology and Pediatrics. 2016;61(3):40–5. (in Russian). DOI: 10.21508/1027-4065-2016-61-3-40-45
12. Lemons J.A., Bauer C.R., Oh W., Korones S.B. et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics. 2001;107(1):Е1. DOI: 10.1542/peds.107.1.e1
13. Bernstein I.M., Horbar J.D., Badger G.J. et al. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am. J. Obstet. Gynecol. 2000;182(1 Pt1): 198–206. DOI: 10.1016/s0002-9378(00)70513-8
14. Pels A., Beune I.M., van Wassenaer‐Leemhuis A.G., Limpens J. et al. Early‐onset fetal growth restriction: a systematic review on mortality and morbidity. Acta Obstet. Gynecol. Scand. 2020;99(2):153–66. DOI: 10.1111/aogs.13702
15. Wilcox A.J., Basso O. Inferring fetal growth restriction as rare, severe, and stable over time. Eur. J. Epidemiol. 2023;38:455–64. DOI: 10.1007/s10654-023-00985-7
16. Insufficient fetal growth requiring maternal medical care (fetal growth restriction): clinical recommendations. M.; 2021. (in Russian)
17. Lees C.C., Stampalija T., Baschat A., da Silva Costa F. et al. ISUOG Practice guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 2020;56(2):298–312. DOI: 10.1002/uog.22134
18. Nardozza L.M., Caetano A.C., Zamarian A.C., Mazzola J.B. et al. Fetal growth restriction: current knowledge. Arch. Gynecol. Obstet. 2017;295(5):1061–77. DOI: 10.1007/s00404-017-4341-9
19. Gordijn S.J., Beune I.M., Ganzevoort W. Building consensus and standards in fetal growth restriction studies. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018;49:117–26. DOI: 10.1016/j.bpobgyn.2018.02.002
20. Carducci B., Bhutta Z.A. Care of the growth-restricted newborn. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018;49:103–16. DOI: 10.1016/j.bpobgyn.2018.02.003
21. Battaglia F.C., Lubchenco L.O. A practical classification of newborn infants by weight and gestational age. J. Pediatr. 1967;71:159.
22. Beune I.M., Bloomfield F.H., Ganzevoort W., Embleton N.D. et al. Consensus based definition of growth restriction in the newborn. J. Pediatr. 2018;196:71–6.e1. DOI: 10.1016/j.jpeds.2017.12.059
23. Leite D.F.B., de Melo E.F.Jr., Souza R.T. et al. Fetal and neonatal growth restriction: new criteria, renew challenges. J. Pediatr. 2018;203:462–63. DOI: 10.1016/j.jpeds.2018.07.094
24. Tudehope D., Vento M., Bhutta Z., Pachi P. Nutritional requirements and feeding recommendations for small for gestational age infants. J. Pediatr. 2013;162(3 suppl.):S81–9. DOI: 10.1016/j.jpeds.2012.11.057
25. Villar J., Puglia F.A., Fenton T.R., Cheikh Ismail L. et al. Body composition at birth and its relationship with neonatal anthropometric ratios: the newborn body composition study of the INTERGROWTH-21st project. Pediatr. Res. 2017;82(2):305–16. DOI: 10.1038/pr.2017.52
26. Kelishadi R., Haghdoost A.A., Jamshidi F., Aliramezany M. et al. Low birthweight or rapid catch-up growth: which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis. Paediatr. Int. Child Health. 2015;35(2):110–23. DOI: 10.1179/2046905514Y.0000000136
27. Ong K.K., Kennedy K., Castaneda-Gutierrez E., Forsyth S. et al. Postnatal growth in preterm infants and later health outcomes: a systematic review. Acta Paediatr. 2015;104(10):974–86. DOI: 10.1111/apa.13128
28. Giabicani E., Pham A., Brioude F., Mitanchez D. et al. Diagnosis and management of postnatal fetal growth restriction. Best Pract. Res. Clin. Endocrinol. Metab. 2018;32(4):523–34. DOI: 10.1016/j.beem.2018.03.013
29. Verduci E., Banderali G., Barberi S., Radaelli G. et al. Epigenetic effects of human breast milk. Nutrients. 2014;6(4):1711–24. DOI: 10.3390/nu6041711
30. Lapointe M., Barrington K.J., Savaria M., Janvier A. Preventing postnatal growth restriction in infants with birthweight less than 1300 g. Acta Paediatr. 2016;105(2):e54–9. DOI: 10.1111/apa.13237
31. Garwolińska D., Kot-Wasik A., Hewelt-Belka W. Pre-analytical aspects in metabolomics of human biofluids — sample collection, handling, transport, and storage. Mol. Omics. 2023;19(2):95–104. DOI: 10.1039/d2mo00212d
32. Priante E., Verlato G., Stocchero M., Giordano G. et al. Metabolomic profiling of intrauterine growth-restricted preterm infants: a matched case–control study. Pediatr. Res. 2023;93(6):1599–608. DOI: 10.1038/s41390-022-02292-5
33. Shoji H., Taka H., Kaga N., Ikeda N. et al. Choline-related metabolites influenced by feeding patterns in preterm and term infants. J. Matern. Fetal Neonatal Med. 2020;33(2):230–5. DOI: 10.1080/14767058.2018.1488165
34. Liang X., Han H., Zhao X., Cao X. et al. Quantitative analysis of amino acids in human and bovine colostrum milk samples through iTRAQ labeling. J. Sci. Food Agric. 2018;98(13):5157–63. DOI: 10.1002/jsfa.9032
35. Luthra G., Vuckovic I., Bangdiwala A., Gray H. et al. First and second trimester urinary metabolic profiles and fetal growth restriction: an exploratory nested case-control study within the infant development and environment study. BMC Pregnancy Childbirth. 2018;18(1):48. DOI: 10.1186/s12884-018-1674-8
36. Mung D., Li L. Applying quantitative metabolomics based on chemical isotope labeling LC-MS for detecting potential milk adulterant in human milk. Anal. Chim. Acta. 2018;1001:78–85. DOI: 10.1016/j.aca.2017.11.019
37. Bazanella M., Maier T.V., Clavel T., Lagkouvardos I. et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am. J. Clin. Nutr. 2017;106(5):1274–86. DOI: 10.3945/ajcn.117.157529
38. Leite D.F.B., Morillon A.C., Melo Júnior E.F., Souza R.T. et al. Examining the predictive accuracy of metabolomics for small-for-gestationalage babies: a systematic review. BMJ Open. 2019;9(8):e031238. DOI: 10.1136/bmjopen-2019-031238
39. Кан Н.Е., Хачатрян З.В., Чаговец В.В., Стародубцева Н.Л. и др. Анализ метаболических путей при задержке роста плода. Биомедицинская химия. 2020;66(2):174–80. Kan N.E., Khachatryan Z.V., Chagovets V.V., Starodubtseva N.L. et al. Analysis of metabolic pathways in intrauterine growth restriction. Biomed. Khim. 2020;66(2):174–80. (in Russian). DOI: 10.18097/PBMC20206602174
40. Chen F., Li Z., Xu Y., Huang S. et al. Non-targeted metabolomic study of fetal growth restriction. Metabolites. 2023;13(6):761. DOI: 10.3390/metabo13060761
41. Favretto D., Cosmi E., Ragazzi E., Visentin S. et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal. Bioanal. Chem. 2012;402(3): 1109–21. DOI: 10.1007/s00216-011-5540-z
42. Horgan R.P., Broadhurst D.I., Walsh S.K., Dunn W.B. et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J. Proteome Res. 2011;10(8):3660–73. DOI: 10.1021/pr2002897
43. Ivorra C., García-Vicent C., Chaves F.J., Monleón D. et al. Metabolomic profiling in blood from umbilical cords of low birth weight newborns. J. Transl. Med. 2012;10:142. DOI: 10.1186/1479-5876-10-142
44. Liu J., Chen X.X., Li X.W., Fu W. et al. Metabolomic research on newborn infants with intrauterine growth restriction. Medicine (Baltimore). 2016;95(17):e3564. DOI: 10.1097/MD.0000000000003564
45. Wang Y., Fu W., Liu J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J. Matern. Fetal Neonatal Med. 2016;29(4):660–8. DOI: 10.3109/14767058.2015.1015417
46. Jones L.L., McDonald D.A., Borum P.R. Acylcarnitines: role in brain. Progr. Lipid Res. 2010;49(1):61–75. DOI: 10.1016/j.plipres.2009.08.004
47. Dessì A., Atzori L., Noto A., Visser G.H. et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J. Matern. Fetal Neonatal Med. 2011;24(suppl.2):35–9. DOI: 10.3109/14767058.2011.605868
48. Priante E., Verlato G., Giordano G., Stocchero M. et al. Intrauterine growth restriction: new insight from the metabolomic approach. Metabolites. 2019;9(11):267. DOI: 10.3390/metabo9110267
49. Hernandez-Rodriguez J., Meneses L., Herrera R., Manjarrez G. Another abnormal trait in the serotonin metabolism path in intrauterine growth-restricted infants. Neonatology. 2009;95(2):125–31. DOI: 10.1159/000153096.
50. Cosmi E., Visentin S., Favretto D., Tucci M. et al. Selective intrauterine growth restriction in monochorionic twin pregnancies: markers of endothelial damage and metabolomic profile. Twin Res. Hum. Genet. 2013;16(4): 816–26. DOI: 10.1017/thg.2013.33
51. Moros G., Boutsikou T., Fotakis C., Iliodromiti Z. et al. Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics. Sci. Rep. 2021;11(1):7824. DOI: 10.1038/s41598-021-87323-7
52. Comai S., Bertazzo A., Brughera M., Crotti S. Tryptophan in health and disease. Adv. Clin. Chem. 2020;95:165–218. DOI: 10.1016/bs.acc.2019.08.005
53. Murthi P., Wallace E.M., Walker D.W. Altered placental tryptophan metabolic pathway in human fetal growth restriction. Placenta. 2017;52:62–70. DOI: 10.1016/j.placenta.2017.02.013
54. Kalhan S.C. One carbon metabolism in pregnancy: impact on maternal, fetal and neonatal health. Mol. Cell Endocrinol. 2016;435:48–60. DOI: 10.1016/j.mce.2016.06.006
55. Kalhan S.C., Marczewski S.E. Methionine, homocysteine, one carbon metabolism and fetal growth. Rev. Endocr. Metab. Disord. 2012;13(2): 109–19. DOI: 10.1007/s11154-012-9215-7
56. Wang L., Han T.L., Luo X., Li S. et al. Metabolic biomarkers of monochorionic twins complicated with selective intrauterine growth restriction in cord plasma and placental tissue. Sci. Rep. 2018;8(1):15914. DOI: 10.1038/s41598-018-33788-y
57. Holeček M. Histidine in health and disease: metabolism, physiological importance, and use as a supplement. Nutrients. 2020;12:848. DOI: 10.3390/nu12030848
58. Perrone S., Laschi E., Buonocore G. Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic. Biol. Med. 2019;142:23–31. DOI: 10.1016/j.freeradbiomed.2019.03.034
59. Rashid C.S., Bansal A., Simmons R.A. Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology (Bethesda). 2018;33:348–59. DOI: 10.1152/physiol.00023.2018
60. Sanz-Cortés M., Carbajo R.J., Crispi F., Figueras F. et al. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR) neonates with and without signs of brain vasodilation. PLoS One. 2013;8(12):e80121. DOI: 10.1371/journal.pone.0080121
61. Sundekilde U.K., Downey E., O'Mahony J.A., O'Shea C.A. et al. The effect of gestational and lactational age on the human milk metabolome. Nutrients. 2016;8(5):304. DOI: 10.3390/nu8050304
62. Gasanbekova A.P., Frankevich N.A., Frankevich V.E. Intrauterine malformation: metabolomics as a new approach to solving the old problem. Obstetrics and Gynecology. 2023;5:12–20. (in Russian). DOI: 10.18565/aig.2022.298
Review
For citations:
Ryumina I.I., Frankevich N.A., Gasanbekova A.P., Kan N.E., Ulyanova O.N., Khabibullina A.I., Frankevich V.E. Features of the Metabolomic Profile in Newborns with Intrauterine Growth Restriction. Title. 2024;23(6):64-69. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-6-64-69