Preview

Title

Advanced search

A Clinical Case of Arginine-Succinic Aciduria in a Newborn

https://doi.org/10.31550/1727-2378-2024-23-6-93-97

Abstract

Aim. To present a clinical case of the development of arginine-succinic aciduria (AYAA) of a newborn.

Key points. The main aspects of the clinical performance, diagnosis, as well as the principles of treatment of AYAA are considered. The incidence of ANA is 1 case per 70 000 newborns. The cause is a defect in the enzyme arginine succinathy lyase, accompanied by the accumulation of toxic metabolites. The authors focused on the development of clinical symptoms of the patient. Using specialized diagnostic methods — gas chromatography and tandem mass spectrometry, as well as the method of mass parallel sequencing, despite the therapy, led to death.

Conclusion. This clinical case demonstrates the importance of early diagnosis of patients with congenital metabolic disorders. It should be remembered that AYAA is a congenital defect, which can be diagnosed by clinical symptoms and the use of gas chromatography, tandem mass spectrometry, and mass parallel sequencing.

About the Authors

L. Yu. Popova
Orenburg State Medical University
Russian Federation

6 Sovetskaya Str., Orenburg, 460014



A. A. Albakasova
Orenburg State Medical University
Russian Federation

6 Sovetskaya Str., Orenburg, 460014



E. A. Zlodeeva
Orenburg State Medical University
Russian Federation

6 Sovetskaya Str., Orenburg, 460014



A. M. Masagutova
Regional Children's Clinical Hospital
Russian Federation

22 Garankin Str., Orenburg, 460060



N. N. Usenkova
Regional Children's Clinical Hospital
Russian Federation

22 Garankin Str., Orenburg, 460060



References

1. Baruteau J., Diez-Fernandez C., Lerner S., Ranucci G. et al. Argininosuccinic aciduria: recent pathophysiological insights and therapeutic prospects. J. Inherit. Metab. Dis. 2019;42(6):1147–61. DOI: 10.1002/jimd.12047

2. Balakrishnan U. Inborn errors of metabolism — approach to diagnosis and management in neonates. Indian J. Pediatr. 2021;88:679–89. DOI: 10.1007/s12098-021-03759-9

3. Erez A. Argininosuccinic aciduria: from a monogenic to a complex disorder. Genet. Med. 2013;15(4):251–7. DOI: 10.1038/gim.2012.166

4. Heng T.Y.J., Ow J.R., Koh A.L., Lim J.S.C. et al. To B(enign) or Not to B: functionalisation of variant in a mild form of argininosuccinate lyase deficiency identified through newborn screening. Clin. Dysmorphol. 2024;33(1):43–9. DOI: 10.1097/MCD.0000000000000475

5. Hu L., Pandey A.V., Eggimann S., Rüfenacht V. et al. Understanding the role of argininosuccinate lyase transcript variants in the clinical and biochemical variability of the urea cycle disorder argininosuccinic aciduria. J. Biol. Chem. 2013;288(48):34599–611. DOI: 10.1074/jbc.M113.503128

6. Nagamani S.C.S., Erez A., Lee B. Argininosuccinate lyase deficiency. 2011 Feb 3 [updated 2019 Mar 28]. In: Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024.

7. Eisermann M., Ottolenghi C., Lonlay P. Neonatal factors related to survival and intellectual and developmental outcome of patients with early-onset urea cycle disorders. Mol. Genet. Metab. 2020;130(2):110–17. DOI: 10.1016/j.ymgme.2020.03.003

8. Diez-Fernandez C., Hertig D., Loup M., Diserens G. et al. Argininosuccinate neurotoxicity and prevention by creatine in argininosuccinate lyase deficiency: an in vitro study in rat three-dimensional organotypic brain cell cultures. J. Inherit. Metab. Dis. 2019;42(6):1077–87. DOI: 10.1002/jimd.12090

9. Liu F., Bao L.S., Liang R.J., Zhao X.Y. et al. Identification of rare variants causing urea cycle disorders: a clinical, genetic, and biophysical study. J. Cell. Mol. Med. 2021;25(8):4099–109. DOI: 10.1111/jcmm.16379

10. Wang Y., Sun Y., Liu M., Zhang X. et al. Functional characterization of argininosuccinate lyase gene variants by mini-gene splicing assay. Front. Genet. 2019;10:436. DOI: 10.3389/fgene.2019.00436

11. Matsumoto S., Häberle J., Kido J., Mitsubuchi H. et al. Urea cycle disorders — update. 2019;64:833–47. DOI: 10.1038/s10038-019-0614-4

12. Balmer C., Pandey A., Rüfenacht V., Nuoffer J.M. et al. Mutations and polymorphisms in the human argininosuccinate lyase (ASL) gene. Hum. Mutat. 2014;35(1):27–35. DOI: 10.1002/humu.22469

13. Griffin C., Ammous Z., Vance G. Rapid quantification of underivatized alloisoleucine and argininosuccinate using mixed-mode chromatography with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019;1:121786. DOI: 10.1016/j.jchromb.2019.121786

14. Arumugam R., Mani R., Venkatesan A., Sengamalai S. et al. Molecular docking studies of natural compounds of naringin on enzymes involved in the urea cycle pathway in hyperammonemia. Tropical J. Pharmaceutical Res. 2020;19(5). DOI: 10.4314/tjpr.v19i5.19

15. Zuza M., Gerbaudo G., Molina S., Pereyra M. Aciduria argininosuccínica: informe de un caso de inicio neonatal. Arch. Argent. Pediatr. 2021;119(5):508–12. DOI: 10.5546/aap.2021.e508

16. Ruoppolo M., Malvagia S., Boenzi S., Carducci C. et al. Expanded newborn screening in Italy using tandem mass spectrometry: two years of national experience. Int. J. Neonatal Screen. 2022:8(3):47. DOI: 10.3390/ijns8030047

17. Maguolo A., Rodella G., Dianin A., Nurti R. et al. Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: a single centre experience. Mol. Genet. Metab. Rep. 2020;24:100632. DOI: 10.1016/j.ymgmr.2020.100632

18. Duff C., Alexander I.E., Baruteau J. Gene therapy for urea cycle defects: an update from historical perspectives to future prospects. J. Inherit. Metab. Dis. 2023;47(1):50–62. DOI: 10.1002/jimd.12609

19. Wen W., Yin D., Huang F., Guo M. et al. NGS in argininosuccinic aciduria detects a mutation (D145G) which drives alternative splicing of ASL: a case report study. BMC Med. Genet. 2016;17:9. DOI: 10.1186/s12881-016-0273-7

20. Hattori A., Okuyama T., So T., Kosuga M. et al. Maternal uniparental disomy of chromosome 7 underlying argininosuccinic aciduria and Silver-Russell syndrome. Hum. Genome Var. 2022;9(1):32. DOI: 10.1038/s41439-022-00211-y

21. Fan L., Zhao J., Jiang L., Ma J. et al. Molecular, biochemical, and clinical analyses of five patients with carbamoyl phosphate synthetase 1 deficiency. J. Clin. Lab. Anal. 2020;34(4):e23124. DOI: 10.1002/jcla.23124

22. Ediger K., Hicks A., Siriwardena K., Joynt C. Brain-lung-thyroid syndrome in a neonate with argininosuccinate lyase deficiency. BMJ Case Rep. 2021;14(3):e241032. DOI: 10.1136/bcr-2020-241032


Review

For citations:


Popova L.Yu., Albakasova A.A., Zlodeeva E.A., Masagutova A.M., Usenkova N.N. A Clinical Case of Arginine-Succinic Aciduria in a Newborn. Title. 2024;23(6):93-97. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-6-93-97

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)