Characteristics of Bone Metabolism in Long-Term Administration of Anticonvulsants
https://doi.org/10.31550/1727-2378-2024-23-7-15-24
Abstract
Aim. To investigate parameters of mineral metabolism and bone mineral density in patients with long-term administration of anticonvulsants and healthy volunteers.
Design. Observational cross-sectional study with including two comparison groups.
Materials and methods. The study included 100 patients receiving anticonvulsants for more than 12 months and 58 healthy volunteers without antiepileptic drugs. Clinical neuropsychiatric examination, analysis of laboratory parameters of microelements and hormones associated with bone metabolism, and radiologic examination of bone mineral density using quantitative computed tomography (CT-densitometry) were performed on all study participants.
Results. The comparative analysis of laboratory parameters of micro-elements and hormones associated with bone metabolism revealed statistically significant differences in mean values of calcium ionized, vitamin D, free thyroxine and prolactin between the groups of patients receiving anticonvulsants and healthy participants (p (U) = 0.044, p (U) = 0.052, p (U) = 0.001, p (U) = 0.003, respectively). Statistically significantly higher levels of vitamin D deficiency (p (χ2) = 0.010, p (χ2) = 0.016) were found in patients with long-term use of anticonvulsants of different generations, in contrast to healthy individuals. The comparative analysis of vitamin D indices and changes in bone mineral density according to CT-densitometry in the groups of patients with long-term anticonvulsants and healthy participants showed no statistically significant differences (p (χ2) = 0.851, p (χ2) = 0.174, respectively). Patients receiving anticonvulsants had significantly higher levels of ionized calcium (p (χ2) < 0.001) compared to healthy participants, which is a marker of the prevalence of the process of osteoresorption over osteogenesis.
Conclusion. The results of the study confirm the negative effect of anticonvulsants on mineral metabolism and bone density. The results of the study may be important for the development of diagnostic and therapeutic measures in patients taking anticonvulsants for the early prevention of bone metabolism disorders and the development of osteoporosis.
About the Authors
N. A. SivakovaRussian Federation
Saint Petersburg
I. V. Abramova
Russian Federation
Saint Petersburg
I. Yu. Trukhina
Russian Federation
Saint Petersburg
V. P. Rybasova
Russian Federation
Saint Petersburg
E. D. Kasyanov
Russian Federation
Saint Petersburg
V. A. Mikhailov
Russian Federation
Saint Petersburg
G. E. Mazo
Russian Federation
Saint Petersburg
References
1. Kornilova L.E., Sokov E.L., Artyukov O.P. Intraosseous blockades (сlinical observations): monograph. M.: Publishing House of the Academy of Natural Sciences; 2014; 4–8. (in Russian)
2. Henning P., Conaway H.H., Lerner U.H. Stimulation of osteoclast formation and bone resorption by glucocorticoids: synergistic interactions with the calcium regulating hormones parathyroid hormone and 1,25(OH)2-vitamin D3. Vitam. Horm. 2022;120: 231–70. DOI: 10.1016/bs.vh.2022.04.005
3. Cianferotti L., Cipriani C., Palermo A., Viapiana O. et al. A practical approach for anabolic treatment of bone fragility with romosozumab. J. Endocrinol. Invest. 2024;47(11):2649–62. DOI: 10.1007/s40618-024-02395-2
4. Greenblatt M.B., Tsai J.N., Wein M.N. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin. Chem. 2017;63(2):464–74. DOI: 10.1373/clinchem.2016.259085
5. Cheng C.H., Chen L.R., Chen K.H. Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int. J. Mol. Sci. 2022;23(3):1376. DOI: 10.3390/ijms23031376
6. Gershtein E.S., Timofeev Yu.S., Zuev A.A., Kushlinskii N.E. RANK/RANKL/OPG ligand-receptor system and its role in primary bone neoplasms (literature analysis and own data). Advances in Molecular Oncology. 2015;2(3):51–9. (in Russian). DOI: 10.17650/2313-805X-2015-2-3-51-59
7. Carrillo-López N., Martínez-Arias L., Fernández-Villabrille S., RuizTorres M.P. et al. Role of the RANK/RANKL/OPG and Wnt/β-catenin systems in CKD bone and cardiovascular disorders. Calcif. Tissue Int. 2021;108(4):439–51. DOI: 10.1007/s00223-020-00803-2
8. Piksin I.N., Davydkin V.I., Moskovchenko A.S., Vilkov A.V. et al. Status of bone metabolism in thyroid diseases (review). The Medical Almanac. 2016;4(44):154–7. (in Russian)
9. Lushchik M.L., Burko I.I., Danilova L.I. Osteoporosis: disorders of bone tissue metabolism, diagnostic and therapeutic approaches: textbook. Minsk; 2023. 39 p. (in Russian)
10. Pack A.M., Morrell M.J. Epilepsy and bone health in adults. Epilepsy Behav. 2004;5 Suppl.2:S24–9. DOI: 10.1016/j.yebeh.2003.11.029
11. Zhidkova I.A., Kaznacheeva T.V., Demidova E.Yu., Berseneva V.V. Molecular mechanisms responsible for the impact of antiepileptic therapy on bone mineral density of epileptic patients. Neurology, Neuropsychiatry, Psychosomatics. 2016;1S:59–65. (in Russian). DOI: 10.14412/2074-2711-2016-1S-59-65
12. Li Y., Zhao P., Jiang B., Liu K. et al. Modulation of the vitamin D/vitamin D receptor system in osteoporosis pathogenesis: insights and therapeutic approaches. J. Orthop. Surg. Res. 2023;18(1):860. DOI: 10.1186/s13018-023-04320-4
13. Hamed S.A. Markers of bone turnover in patients with epilepsy and their relationship to management of bone diseases induced by antiepileptic drugs. Expert Rev. Clin. Pharmacol. 2016;9(2): 267–86. DOI: 10.1586/17512433.2016.1123617
14. Listratov A.I., Ostroumova O.D., Klepikova M.V., Aleshckovich E.V. Drug-induced hypocalcemia. Medical Council. 2021;14:164–75. (in Russian). DOI: 10.21518/2079-701X-2021-14-164-175
15. Han Y., Yang J., Zhong R., Guo X. et al. Side effects of long-term oral anti-seizure drugs on thyroid hormones in patients with epilepsy: a systematic review and network meta-analysis. Neurol. Sci. 2022;43(9):5217–27. DOI: 10.1007/s10072-022-06120-w
16. Kanis J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994;4(6):368–81. DOI: 10.1007/BF01622200
17. Suplotova L.A., Avdeeva V.A., Pigarova E.A., Rozhinskaya L.Y. et al. Vitamin D deficiency in Russia: the first results of a registered, non-interventional study of the frequency of vitamin D deficiency and insufficiency in various geographic regions of the country. Problems of Endocrinology. 2021;67(2):84–92. (in Russian). DOI: 10.14341/probl12736
18. Dong N., Guo H.L., Hu Y.H., Yang J. et al. Association between serum vitamin D status and the anti-seizure treatment in Chinese children with epilepsy. Front. Nutr. 2022;9:968868. DOI: 10.3389/fnut.2022.968868
19. Kostrzak A., Męczekalski B. Hyperprolactinaemia and bone mineral density. Pol. Merkur. Lekarski. 2015;39(230):122–5. (in Polish)
20. Evreinov V.V. Hematological, biochemical, coagulation profiles of patients with cerebral palsy and epilepsy on the background of taking valproic acid in the perioperative period. Messenger of Anesthesiology and Resuscitation. 2024;21(1):17–23. (in Russian). DOI: 10.24884/2078-5658-2024-21-1-17-23
21. Sözen T., Özışık L., Başaran N.Ç. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4(1):46–56. DOI: 10.5152/eurjrheum.2016.048
Review
For citations:
Sivakova N.A., Abramova I.V., Trukhina I.Yu., Rybasova V.P., Kasyanov E.D., Mikhailov V.A., Mazo G.E. Characteristics of Bone Metabolism in Long-Term Administration of Anticonvulsants. Title. 2024;23(7):15-24. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-7-15-24