Preview

Title

Advanced search

Angiogenic and Antiangiogenic Factors in the Genesis of Placental Abnormalities

https://doi.org/10.31550/1727-2378-2024-23-2-27-32

Abstract

Aim. To evaluate the role of placenta growth factor (PlGF), vascular endothelial growth factor (VEGF) and soluble fms-like tyrosine kinase-1 (sFlt-1) in the pathogenesis of placental adherent and invasive pathology (PAIP).

Key points. sFlt-1 is an inhibitor of the angiogenic action of PLGF and VEGF.

The concentration of sFlt-1 in the blood serum of patients with PAIP was significantly lower than in women with physiological pregnancy in all the studies presented in this review. Only two studies have determined thresholds for serum markers for PAIP, but according to the results of the meta-analysis, they had large differences. Despite the known proangiogenic function of VEGF and PlGF, a significant correlation between their levels was not found either in serum by enzyme immunoassay or in expression on chorionic cells, decidual tissue and myometrium in abnormal placental invasion.

Conclusion. Further study of the role of VEFG, PlGF and sFlt-1 in the pathogenesis of PAIP is needed to find their threshold levels in the blood and use as a diagnostic markers.

About the Authors

N. Yu. Ponikarova
Almazov National Medical Research Centre
Russian Federation

2, Akkuratov Str., Saint Petersburg, 197341.



A. F. Arutiunian
Almazov National Medical Research Centre; Clinical Hospital “RZD-Medicine” of Saint-Petersburg
Russian Federation

2, Akkuratov Str., Saint Petersburg, 197341;

27, Mechnikov Ave., Saint Petersburg, 195271.



E. S. Shelepova
Almazov National Medical Research Centre
Russian Federation

2, Akkuratov Str., Saint Petersburg, 197341.



A. O. Godzoeva
Almazov National Medical Research Centre
Russian Federation

2, Akkuratov Str., Saint Petersburg, 197341.



V. A. Markina
Almazov National Medical Research Centre
Russian Federation

2, Akkuratov Str., Saint Petersburg, 197341.



References

1. Wu S., Kocherginsky M., Hibbard J.U. Abnormal placentation: twenty-year analysis. Am. J. Obstet. Gynecol. 2005;192(5): 1458–61. DOI: 10.1016/j.ajog.2004.12.074

2. Mogos M.F., Salemi J.L., Ashley M., Whiteman V.E. et al. Recent trends in placenta accreta in the United States and its impact on maternal–fetal morbidity and healthcare-associated costs, 1998– 2011. J. Matern. Fetal Neonatal Med. 2016;29(7):1077–82. DOI: 10.3109/14767058.2015.1034103

3. American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Obstetric Care Consensus No. 7: Placenta accreta spectrum. Obstet. Gynecol. 2018;132(6):e259–75. DOI: 10.1097/AOG.0000000000002983

4. Hong S., Le Y., Lio K.U., Zhang T. et al. Performance comparison of ultrasonography and magnetic resonance imaging in their diagnostic accuracy of placenta accreta spectrum disorders: a systematic review and meta-analysis. Insights Imaging. 2022;13(1):50. DOI: 10.1186/s13244-022-01192-w

5. Bartels H.C., Postle J.D., Downey P., Brennan D.J. Placenta accreta spectrum: a review of pathology, molecular biology, and biomarkers. Dis. Markers. 2018;2018:1507674. DOI: 10.1155/2018/1507674

6. Pagani G., Cali G., Acharya G., Trisch I.-T. et al. Diagnostic accuracy of ultrasound in detecting the severity of abnormally invasive placentation: a systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2018;97(1):25–37. DOI: 10.1111/aogs.13238

7. Gorczyca M.E., Springer S., Pateisky P., Ott J. et al. Comparison of ultrasound descriptors of abnormally invasive placenta (AIP) over the course of the second and third trimester — is an increase verifiable? J. Clin. Med. 2021;10(21):4960. DOI: 10.3390/jcm10214960

8. Cubo A.M., Villalba Yarza A., Gastaca I., Lapresa-Alcalde M.V. et al. Cesarean hysterectomy in abnormally invasive placenta: the role of prenatal diagnosis. Diseases. 2021;9(3):56. DOI: 10.3390/diseases9030056

9. Shainker S.A., Silver R.M., Modest A.M., Hacker M.R. et al. Placenta accreta spectrum: biomarker discovery using plasma proteomics. Am. J. Obstet. Gynecol. 2020;223(3):433.e1–14. DOI: 10.1016/j.ajog.2020.03.019

10. Jauniaux E., Jurkovic D., Hussein A.M., Burton G.J. New insights into the etiopathology of placenta accreta spectrum. Am. J. Obstet. Gynecol. 2022;227(3):384–91. DOI: 10.1016/j.ajog.2022.02.038

11. Jauniaux E., Hussein A.M., Fox K.A., Collins S.L. New evidence-based diagnostic and management strategies for placenta accreta spectrum disorders. Best Pract. Res. Clin. Obstet. Gynaecol. 2019;61:75–88. DOI: 10.1016/j.bpobgyn.2019.04.006

12. Kyozuka H., Yamaguchi A., Suzuki D., Fujimori K. et al. Risk factors for placenta accreta spectrum: findings from the Japan environment and Children’s study. BMC Pregnancy Childbirth. 2019;19(1):447. DOI: 10.1186/s12884-019-2608-9

13. Pollheimer J., Vondra S., Baltayeva J., Beristain A.G. et al. Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front. Immunol. 2018;9:2597. DOI: 10.3389/fimmu.2018.02597

14. Chang C.-W., Wakeland A.K., Parast M.M. Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J. Endocrinol. 2018;236(1):R43–56. DOI: 10.1530/JOE-17-0402

15. Oghbaei F., Zarezadeh R., Jafari-Gharabaghlou D., Ranjbar M. et al. Epithelial-mesenchymal transition process during embryo implantation. Cell Tissue Res. 2022;388(1):1–17. DOI: 10.1007/s00441-021-03574-w

16. Hanna J., Goldman-Wohl D., Hamani Y., Avraham I. et al. Decidual NK cells regulate key developmental processes at the human fetalmaternal interface. Nat. Med. 2006;12(9):1065–74. DOI: 10.1038/nm1452

17. Fraser R., Zenclussen A.C. Killer timing: the temporal uterine natural killer cell differentiation pathway and implications for female reproductive health. Front. Endocrinol. 2022;13:904744. DOI: 10.3389/fendo.2022.904744

18. Shibuya M. Tyrosine kinase receptor Flt/VEGFR family: its characterization related to angiogenesis and cancer. Genes Cancer. 2010;1(11):1119–23. DOI: 10.1177/1947601910392987

19. Lecarpentier E., Tsatsaris V. Angiogenic balance (sFlt-1/PlGF) and preeclampsia. Ann. Endocrinol. 2016;77(2):97–100. DOI: 10.1016/j.ando.2016.04.007

20. Melincovici C.S., Boşca A.B., Şuşman S., Mărginean M. et al. Vascular endothelial growth factor (VEGF) — key factor in normal and pathological angiogenesis. Rom J. Morphol. Embryol. 2018;59(2):455–67.

21. De Falco S. The discovery of placenta growth factor and its biological activity. Exp. Mol. Med. 2012;44(1):1–9. DOI: 10.3858/emm.2012.44.1.025

22. Zeisler H., Llurba E., Chantraine F., Vatish M. et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N. Engl. J. Med. 2016;374(1):13–22. DOI: 10.1056/NEJMoa1414838

23. Kendall R.L., Wang G., Thomas K.A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun. 1996;226(2):324–8. DOI: 10.1006/bbrc.1996.1355

24. Yagel S., Cohen S.M., Goldman-Wohl D. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array. Am. J. Obstet. Gynecol. 2022;226(2S):S963–72. DOI: 10.1016/j.ajog.2020.10.023

25. Faraji A., Akbarzadeh-Jahromi M., Bahrami S., Gharamani S. et al. Predictive value of vascular endothelial growth factor and placenta growth factor for placenta accreta spectrum. J. Obstet. Gynaecol. 2022;42(5):900–5. DOI: 10.1080/01443615.2021.1955337

26. Rodesch F., Simon P., Donner C., Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol. 1992;80(2):283–5.

27. Милованов А.П. Цитотрофобластическая инвазия — важнейший механизм плацентации и прогрессии беременности. Архив патологии. 2019;81(4):5-10. [Milovanov A.P. Cytotrophoblastic invasion is the most important mechanism of placentation and pregnancy progression. Archive of Pathology. 2019;81(4):5–10. (in Russian)]. DOI: 10.17116/patol2019810415

28. Uyanıkoğlu H., İncebıyık A., Turp A.B., Çakmak G. et al. Serum angiogenic and anti-angiogenic markers in pregnant women with placenta percreta. Balk. Med. J. 2018;35(1):55–60. DOI: 10.4274/balkanmedj.2016.1890

29. Lumbanraja S., Yaznil M.R., Siahaan A.M., Parda B.B.E. Soluble FMS-like tyrosine kinase: role in placenta accreta spectrum disorder. F1000Res. 2021;10:618. DOI: 10.12688/f1000research.54719.3

30. Jauniaux E., Ayres-de-Campos D., Langhoff-Roos J., Fox K.A. et al. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders. Int. J. Gynaecol. Obstet. 2019;146(1):20–4. DOI: 10.1002/ijgo.12761

31. Zhang F., Gu M., Chen P., Wan S. et al. Distinguishing placenta accreta from placenta previa via maternal plasma levels of sFlt-1 and PLGF and the sFlt-1/PLGF ratio. Placenta. 2022;124:48–54. DOI: 10.1016/j.placenta.2022.05.009

32. Schwickert A., Chantraine F., Ehrlich L., Henrich W. et al. Maternal serum VEGF predicts abnormally invasive placenta better than NT-proBNP: a multicenter case-control study. Reprod. Sci. 2021;28(2):361–70. DOI: 10.1007/s43032-020-00319-y

33. Wehrum M.J., Buhimschi I.A., Salafia C., Thung S. et al. Accreta complicating complete placenta previa is characterized by reduced systemic levels of vascular endothelial growth factor and epithelial-to-mesenchymal transition of the invasive trophoblast. Am. J. Obstet. Gynecol. 2011;204(5):411.e1–11. DOI: 10.1016/j.ajog.2010.12.027

34. Alessandrini L., Aryananda R., Ariani G., Agustina B. et al. The correlation between serum levels and placental tissue expression of PLGF and sFLT-1 and the FIGO grading of the placenta accreta spectrum disorders. J. Matern. Fetal Neonatal Med. 2023;36(1):2183744. DOI: 10.1080/14767058.2023.2183744

35. Duzyj C.M., Buhimschi I.A., Laky C.A., Cozzini G. et al. Extravillous trophoblast invasion in placenta accreta is associated with differential local expression of angiogenic and growth factors: a cross-sectional study. BJOG. 2018;125(11):1441–8. DOI: 10.1111/1471-0528.15176

36. Alzoubi O., Maaita W., Madain Z., Alzoubi M. et al. Association between placenta accreta spectrum and third-trimester serum levels of vascular endothelial growth factor, placental growth factor, and soluble Fms-like tyrosine kinase-1: a meta-analysis. J. Obstet. Gynaecol. Res. 2022;48(9):2363–76. DOI: 10.1111/jog.15330

37. Zhou B., Hou J., Fu J., Kan C. [Value of color Doppler ultrasound combined with serological markers in diagnosis of placental implantation]. Int. J. Lab. Med. 2020;41(11):1326–8+32.

38. Liu Y., Wang D., Wei J., Wu D. [The value of serum VEGF, PlGF and sFlt-1 levels of pregnant women during the third trimester pregnancy for predicting placenta accreta]. Chin. J. Fam. Plann. 2019;27(11):1548–51.

39. Palm M., Basu S., Larsson A., Wernroth L. et al. A longitudinal study of plasma levels of soluble fms-like tyrosine kinase 1 (sFlt1), placental growth factor (PlGF), sFlt1:PlGF ratio and vascular endothelial growth factor (VEGF-A) in normal pregnancy. Acta Obstet. Gynecol. Scand. 2011;90(11):1244–51. DOI: 10.1111/j.1600-0412.2011.01186.x

40. Verlohren S., Brennecke S.P., Galindo A., Karumanchi S.A. et al. Clinical interpretation and implementation of the sFlt-1/ PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022;27:42–50. DOI: 10.1016/j.preghy.2021.12.003

41. Bednarek-Jędrzejek M., Kwiatkowski S., Ksel-Hryciów J., Tousty P. et al. The sFlt-1/PlGF ratio values within the <38, 38–85 and >85 brackets as compared to perinatal outcomes. J. Perinat. Med. 2019;47(7):732–40. DOI: 10.1515/jpm-2019-0019


Review

For citations:


Ponikarova N.Yu., Arutiunian A.F., Shelepova E.S., Godzoeva A.O., Markina V.A. Angiogenic and Antiangiogenic Factors in the Genesis of Placental Abnormalities. Title. 2024;23(2):27-32. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-2-27-32

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)