Visual Agnosia as a Sign of Acute Ischemic Stroke: Frequency and Association with other Cognitive Impairments
https://doi.org/10.31550/1727-2378-2022-21-8-12-17
Abstract
Study Objective: To identify the frequency of the types of visual agnosia (VA), their association with one another and with other neuropsychologic disorders in patients with acute hemispheric non-lacunar ischemic stroke (IS).
Study Design: retrospective study.
Materials and Methods. We followed up 104 patients with acute IS (mean age: 66.7 ± 9.4 years old), who underwent neurological, neuropsychologic, neuroimaging and ophthalmological examination.
Study Results. VA was diagnosed in 52% of patients; in the majority of cases, the condition was diagnosed on the basis of deep neuropsychologic tests only, and it was asymptomatic. VA structure was dominated by unilateral visual neglect (21%), apraxia (20%) and object VA (18%).
Object VA was the most frequent clinical sign (8 (42%) out of 19 patients). Spatial VA (including neglect and apraxia) correlated with the rate of regulatory dysfunction and short-term visual memory impairment; object VA — with regulatory dysfunction; facial VA — only with a decrease in short-term visual memory. The cluster analysis allowed identifying relatively homogeneous groups of patients: 1) no VA; 2) impaired spacial gnosis; 3) with impaired objects and facial gnosis.
Conclusion. VA is diagnosed in a half of patients with acute hemispheric non-lacunar IS and is mostly asymptomatic. Spatial VA is predominant. Spacial, object and facial VA have statistically significant association with frontal lobe dysfunction; spacial and facial — with short-term visual memory impairments. Two most common combinations of various VA types in acute IS were identified — visual and spacial disorders and impaired object and face recognition.
About the Authors
G. V. TikhomirovRussian Federation
0/1 Minin and Pozharsky Str., Nizgny Novgorod, 613005
V. N. Grigorieva
Russian Federation
0/1 Minin and Pozharsky Str., Nizgny Novgorod, 613005
References
1. Haque S., Vaphiades M.S., Lueck C.J. The visual agnosias and related disorders. J. Neuroophthalmol. 2018; 38(3): 379–392. DOI: 10.1097/WNO.0000000000000556
2. Ptak R. Definition: visual object agnosia. Cortex. 2021; 143: 281. DOI: 10.1016/j.cortex.2021.07.007
3. Homskaya E.D. Neuropsychology. St. Petersburg; 2022. 496 p. (In Russian)
4. Kudashkina E.Yu., Sukhih E.A. Visual agnosia. neurophysiological bases. Types and methods of detection. Vestnik SMUS74. 2017; 4(19): 64–69. (In Russian)
5. Martinaud O. Visual agnosia and focal brain injury. Rev. Neurol. 2017; 173(7–8): 451–460. DOI: 10.1016/j.neurol.2017.07.009
6. Elder J.H. Shape from contour: computation and representation. Annu. Rev. Vis. Sci. 2018; 4: 423–450. DOI: 10.1146/annurevvision-091517-034110
7. Gerlach C., Robotham R.J. Object recognition and visual object agnosia. Handb. Clin. Neurol. 2021; 178: 155–173. DOI: 10.1016/B978-0-12-821377-3.00008-8
8. Cecchetto S., Lawson R. The role of contour polarity, objectness, and regularities in haptic and visual perception. Atten. Percept. Psychophys. 2018; 80(5): 1250–1264. DOI: 10.3758/s13414-018-1499-6
9. Bartolomeo P. Visual agnosia and imagery after Lissauer. Brain. 2021; 144(9): 2557–2559. DOI: 10.1093/brain/awab159
10. Martinaud O., Pouliquen D., Gérardin E. et al. Visual agnosia and posterior cerebral artery infarcts: an anatomical-clinical study. PLoS One. 2012; 7(1): e30433. DOI: 10.1371/journal.pone.0030433
11. Rowe F.J. Vision in stroke cohort: profile overview of visual impairment. Brain Behav. 2017; 7(11): e00771. DOI: 10.1002/brb3.771
12. Luriya A.R. Higher cortical functions of a person. St. Petersburg; 2018. 768 p. (In Russian)
13. Kessels R.P., van Zandvoort M.J., Postma A. et al. The Corsi Block-Tapping Task: standardization and normative data. Appl. Neuropsychol. 2000; 7(4): 252–258. DOI: 10.1207/S15324826AN0704_8
14. Bachofner H., Scherer K.A., Vanbellingen T. et al. Validation of the Apraxia Screen TULIA (AST) in schizophrenia. Neuropsychobiology. 2022; 81(4): 311–321. DOI: 10.1159/000523778
15. Dubois B., Slachevsky A., Litvan I., Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000; 55(11): 1621– 1626. DOI: 10.1212/wnl.55.11.1621
16. Martin N.A. Test of Visual Perceptual Skills (4th ed.). Novato; 2017.
17. Riddoch M.J., Humphreys G.W. BORB: Birmingham Object Recognition Battery. London; 1993. 410 p.
18. Stone A., Cooke D., Morton D., Steele M. Reliability of revised scoring methods for the Schenkenberg Line Bisection Test with adults following stroke: preliminary findings. Br. J. Occupat. Ther. 2019; 82(21): 030802261986637. DOI: 10.1177/0308022619866377
19. McIntosh R.D., Ietswaart M., Milner A.D. Weight and see: line bisection in neglect reliably measures the allocation of attention, but not the perception of length. Neuropsychologia. 2017; 106: 146–158. DOI: 10.1016/j.neuropsychologia.2017.09.014
20. Humphreys G.W., Bickerton W.L., Samson D., Riddoch M.J. The Birmingham cognitive screen (BCoS). London; 2012.
21. Chechlacz M., Novick A., Rotshtein P. et al. The neural substrates of drawing: a voxel-based morphometry analysis of constructional, hierarchical, and spatial representation deficits. J. Cogn. Neurosci. 2014; 26(12): 2701–2715. DOI: 10.1162/jocn_a_00664
22. Balashova E.Yu. Neuropsychological diagnostics. Classical stimulus materials. Moscow; 2016. 72 p. (In Russian)
23. Beaudoin A.J., Fournier B., Julien-Caron L., Moleski L. et al. Visuoperceptual deficits and participation in older adults after stroke. Aust. Occup. Ther. J. 2013; 60(4): 260–266. DOI: 10.1111/1440-1630.12046
24. Pacella V., Scandola M., Beccherle M. et al. Anosognosia for theory of mind deficits: A single case study and a review of the literature. Neuropsychologia. 2020; 148: 107641. DOI: 10.1016/j.neuropsychologia.2020.107641
25. Rengachary J., He B.J., Shulman G.L., Corbetta M. A behavioral analysis of spatial neglect and its recovery after stroke. Front. Hum. Neurosci. 2011; 5(29): 1–13. DOI: 10.3389/fnhum.2011.00029
26. Esposito E., Shekhtman G., Chen P. Prevalence of spatial neglect post-stroke: A systematic review. Ann. Phys. Rehabil. Med. 2021; 64(5): 101459. DOI: 10.1016/j.rehab.2020.10.010
27. Holler D.E., Behrmann M., Snow J.C. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex. 2019; 119: 555-68. DOI: 10.1016/j.cortex.2019.02.030
28. Bicanski A., Burgess N. A computational model of visual recognition memory via grid cells. Curr. Biol. 2019; 29(6): 979–990. DOI: 10.1016/j.cub.2019.01.077
29. Mikhailova E.S., Kurgansky A.V., Nushtaeva R.A. et al. Intracortical directed connectivity for information retention in visual-spatial working memory. Dokl. Biol. Sci. 2021; 500(1): 133–137. DOI: 10.1134/S0012496621050070
30. Milner A.D., Cavina-Pratesi C. Perceptual deficits of object identification: apperceptive agnosia. Handb. Clin. Neurol. 2018; 151: 269–286. DOI: 10.1016/B978-0-444-63622-5.00013-9
Review
For citations:
Tikhomirov G.V., Grigorieva V.N. Visual Agnosia as a Sign of Acute Ischemic Stroke: Frequency and Association with other Cognitive Impairments. Title. 2022;21(8):12-17. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-8-12-17