Preview

Title

Advanced search

Visual Agnosia as a Sign of Acute Ischemic Stroke: Frequency and Association with other Cognitive Impairments

https://doi.org/10.31550/1727-2378-2022-21-8-12-17

Abstract

Study Objective: To identify the frequency of the types of visual agnosia (VA), their association with one another and with other neuropsychologic disorders in patients with acute hemispheric non-lacunar ischemic stroke (IS).

Study Design: retrospective study.

Materials and Methods. We followed up 104 patients with acute IS (mean age: 66.7 ± 9.4 years old), who underwent neurological, neuropsychologic, neuroimaging and ophthalmological examination.

Study Results. VA was diagnosed in 52% of patients; in the majority of cases, the condition was diagnosed on the basis of deep neuropsychologic tests only, and it was asymptomatic. VA structure was dominated by unilateral visual neglect (21%), apraxia (20%) and object VA (18%).

Object VA was the most frequent clinical sign (8 (42%) out of 19 patients). Spatial VA (including neglect and apraxia) correlated with the rate of regulatory dysfunction and short-term visual memory impairment; object VA — with regulatory dysfunction; facial VA — only with a decrease in short-term visual memory. The cluster analysis allowed identifying relatively homogeneous groups of patients: 1) no VA; 2) impaired spacial gnosis; 3) with impaired objects and facial gnosis.

Conclusion. VA is diagnosed in a half of patients with acute hemispheric non-lacunar IS and is mostly asymptomatic. Spatial VA is predominant. Spacial, object and facial VA have statistically significant association with frontal lobe dysfunction; spacial and facial — with short-term visual memory impairments. Two most common combinations of various VA types in acute IS were identified — visual and spacial disorders and impaired object and face recognition.

About the Authors

G. V. Tikhomirov
Privolzhsky State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

0/1 Minin and Pozharsky Str., Nizgny Novgorod, 613005



V. N. Grigorieva
Privolzhsky State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

0/1 Minin and Pozharsky Str., Nizgny Novgorod, 613005



References

1. Haque S., Vaphiades M.S., Lueck C.J. The visual agnosias and related disorders. J. Neuroophthalmol. 2018; 38(3): 379–392. DOI: 10.1097/WNO.0000000000000556

2. Ptak R. Definition: visual object agnosia. Cortex. 2021; 143: 281. DOI: 10.1016/j.cortex.2021.07.007

3. Homskaya E.D. Neuropsychology. St. Petersburg; 2022. 496 p. (In Russian)

4. Kudashkina E.Yu., Sukhih E.A. Visual agnosia. neurophysiological bases. Types and methods of detection. Vestnik SMUS74. 2017; 4(19): 64–69. (In Russian)

5. Martinaud O. Visual agnosia and focal brain injury. Rev. Neurol. 2017; 173(7–8): 451–460. DOI: 10.1016/j.neurol.2017.07.009

6. Elder J.H. Shape from contour: computation and representation. Annu. Rev. Vis. Sci. 2018; 4: 423–450. DOI: 10.1146/annurevvision-091517-034110

7. Gerlach C., Robotham R.J. Object recognition and visual object agnosia. Handb. Clin. Neurol. 2021; 178: 155–173. DOI: 10.1016/B978-0-12-821377-3.00008-8

8. Cecchetto S., Lawson R. The role of contour polarity, objectness, and regularities in haptic and visual perception. Atten. Percept. Psychophys. 2018; 80(5): 1250–1264. DOI: 10.3758/s13414-018-1499-6

9. Bartolomeo P. Visual agnosia and imagery after Lissauer. Brain. 2021; 144(9): 2557–2559. DOI: 10.1093/brain/awab159

10. Martinaud O., Pouliquen D., Gérardin E. et al. Visual agnosia and posterior cerebral artery infarcts: an anatomical-clinical study. PLoS One. 2012; 7(1): e30433. DOI: 10.1371/journal.pone.0030433

11. Rowe F.J. Vision in stroke cohort: profile overview of visual impairment. Brain Behav. 2017; 7(11): e00771. DOI: 10.1002/brb3.771

12. Luriya A.R. Higher cortical functions of a person. St. Petersburg; 2018. 768 p. (In Russian)

13. Kessels R.P., van Zandvoort M.J., Postma A. et al. The Corsi Block-Tapping Task: standardization and normative data. Appl. Neuropsychol. 2000; 7(4): 252–258. DOI: 10.1207/S15324826AN0704_8

14. Bachofner H., Scherer K.A., Vanbellingen T. et al. Validation of the Apraxia Screen TULIA (AST) in schizophrenia. Neuropsychobiology. 2022; 81(4): 311–321. DOI: 10.1159/000523778

15. Dubois B., Slachevsky A., Litvan I., Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000; 55(11): 1621– 1626. DOI: 10.1212/wnl.55.11.1621

16. Martin N.A. Test of Visual Perceptual Skills (4th ed.). Novato; 2017.

17. Riddoch M.J., Humphreys G.W. BORB: Birmingham Object Recognition Battery. London; 1993. 410 p.

18. Stone A., Cooke D., Morton D., Steele M. Reliability of revised scoring methods for the Schenkenberg Line Bisection Test with adults following stroke: preliminary findings. Br. J. Occupat. Ther. 2019; 82(21): 030802261986637. DOI: 10.1177/0308022619866377

19. McIntosh R.D., Ietswaart M., Milner A.D. Weight and see: line bisection in neglect reliably measures the allocation of attention, but not the perception of length. Neuropsychologia. 2017; 106: 146–158. DOI: 10.1016/j.neuropsychologia.2017.09.014

20. Humphreys G.W., Bickerton W.L., Samson D., Riddoch M.J. The Birmingham cognitive screen (BCoS). London; 2012.

21. Chechlacz M., Novick A., Rotshtein P. et al. The neural substrates of drawing: a voxel-based morphometry analysis of constructional, hierarchical, and spatial representation deficits. J. Cogn. Neurosci. 2014; 26(12): 2701–2715. DOI: 10.1162/jocn_a_00664

22. Balashova E.Yu. Neuropsychological diagnostics. Classical stimulus materials. Moscow; 2016. 72 p. (In Russian)

23. Beaudoin A.J., Fournier B., Julien-Caron L., Moleski L. et al. Visuoperceptual deficits and participation in older adults after stroke. Aust. Occup. Ther. J. 2013; 60(4): 260–266. DOI: 10.1111/1440-1630.12046

24. Pacella V., Scandola M., Beccherle M. et al. Anosognosia for theory of mind deficits: A single case study and a review of the literature. Neuropsychologia. 2020; 148: 107641. DOI: 10.1016/j.neuropsychologia.2020.107641

25. Rengachary J., He B.J., Shulman G.L., Corbetta M. A behavioral analysis of spatial neglect and its recovery after stroke. Front. Hum. Neurosci. 2011; 5(29): 1–13. DOI: 10.3389/fnhum.2011.00029

26. Esposito E., Shekhtman G., Chen P. Prevalence of spatial neglect post-stroke: A systematic review. Ann. Phys. Rehabil. Med. 2021; 64(5): 101459. DOI: 10.1016/j.rehab.2020.10.010

27. Holler D.E., Behrmann M., Snow J.C. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex. 2019; 119: 555-68. DOI: 10.1016/j.cortex.2019.02.030

28. Bicanski A., Burgess N. A computational model of visual recognition memory via grid cells. Curr. Biol. 2019; 29(6): 979–990. DOI: 10.1016/j.cub.2019.01.077

29. Mikhailova E.S., Kurgansky A.V., Nushtaeva R.A. et al. Intracortical directed connectivity for information retention in visual-spatial working memory. Dokl. Biol. Sci. 2021; 500(1): 133–137. DOI: 10.1134/S0012496621050070

30. Milner A.D., Cavina-Pratesi C. Perceptual deficits of object identification: apperceptive agnosia. Handb. Clin. Neurol. 2018; 151: 269–286. DOI: 10.1016/B978-0-444-63622-5.00013-9


Review

For citations:


Tikhomirov G.V., Grigorieva V.N. Visual Agnosia as a Sign of Acute Ischemic Stroke: Frequency and Association with other Cognitive Impairments. Title. 2022;21(8):12-17. (In Russ.) https://doi.org/10.31550/1727-2378-2022-21-8-12-17

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)