Preview

Title

Advanced search

Prolactin as a Factor Influencing the Course of a New Coronavirus Infection: a Literary Review

https://doi.org/10.31550/1727-2378-2023-22-4-64-69

Abstract

Aim: to present the likely pathophysiological mechanisms of hyperprolactinemia development in patients with a new coronavirus infection, as well as to present the results of clinical studies available at the time of writing the review to assess the contribution of hyperprolactinemia to the severity of the coronavirus infection.

Key points: hyperprolactinemia is considered as a negative factor contributing to a more severe course of coronavirus infection in different groups of patients. The more severe course of a covid infection is based on the development of inflammatory processes that increase with an increased level of prolactin in the blood.

Conclusion. The authors of most research papers report that experimental, clinical trials and clinical studies are needed to confirm the inflammatory and/or anti-inflammatory role of prolactin in the setting of coronavirus infection. 

About the Authors

S. M. Voevoda
Research Institute of Therapy and Preventive Medicine – the branch of the Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science; Federal Research Center for Fundamental and Translational Medicine
Russian Federation

175/1 B. Bogatkova Str., Novosibirsk,  630089;  2 Timatkova Str., Novosibirsk,  630117



O. D. Rymar
Research Institute of Therapy and Preventive Medicine – the branch of the Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science
Russian Federation

175/1 B. Bogatkova Str., Novosibirsk,  630089



References

1. Voevoda M.I., Fomicheva M.L. All about the coronavirus COVID-19. Moscow; 2020. 92 p.

2. Ivanisenko V.A., Gaisler E.V., Basov N.V. et al. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12:19977. DOI: 10.1038/s41598-022-24170-0

3. Rasheed H.A., Al-Kuraishy H.M., Al-Gareeb A.I. et al. Effects of diabetic pharmacotherapy on prolactin hormone in patients with type 2 diabetes mellitus: Bane or Boon. J. Adv. Pharm. Technol. Res. 2019;10(4):163–168. DOI: 10.4103/japtr.JAPTR_65_19

4. Grattan D.R. Coordination or coincidence? The relationship between prolactin and gonadotropin secretion. Trends Endocrinol. Metab. 2018;29(1):3–5. DOI: 10.1016/j.tem.2017.11.004

5. Costello L.C., Franklin R.B. Testosterone, prolactin, and oncogenic regulation of the prostate gland. A new concept: testosteroneindependent malignancy is the development of prolactin-dependent malignancy. Oncol. Rev. 2018;12(2):356. DOI: 10.4081/oncol.2018.356

6. Bern H.A., Nicoll C.S. The comparative endocrinology of prolactin. Rec. Prog. Horm. Res. 1968;24:681–720. DOI: 10.1016/b978-1- 4831-9827-9.50019-8

7. Voevoda S.M., Shcherbakova L.V., Denisova D.V. et al. Association of atherosclerosisassociated cardiovascular risk factors with different levels of prolactin in women of reproductive age. Atherosclerosis. 2018;14(4):67–72. (in Russian). DOI: 10.15372/ATER20180407

8. Rymar O.D., Voevoda S.M., Schachshneider E.V. The frequency of the metabolic syndrome and its individual components in women aged 25–45 depending on the level of prolactin. Obesity and metabolism. 2021;18(2):180– 189. (in Russian). DOI: 10.14341/omet12475

9. Blanco F.F., Legorreta H.M.V., Huerta V.Y.R. et al. Role of prolactin in the immune response. Bol. Med. Hosp. Infant. Mex. 2012;69(5):329–336.

10. Aguilar-Rojas A., Huerta-Reyes M. Human gonadotropin-releasing hormone receptor-activated cellular functions and signaling pathways in extra-pituitary tissues and cancer cells. Oncol. Rep. 2009.22(5):981–990. DOI: 10.3892/or_00000525

11. Yu-Lee L.-Y. Molecular actions of prolactin in the immune system. Proc. Soc. Exp. Biol. Med. 1997;215(1):35–52. DOI: 10.3181/00379727-215-44111

12. De Bellis A., Bizzarro A., Pivonello R. et al. Prolactin and autoimmunity. Pituitary. 2005;8(1):25–30. DOI: 10.1007/s11102-005-5082-5

13. Bernard V., Young J., Binart N. Prolactin — a pleiotropic factor in health and disease. Nat. Rev. Endocrinol. 2019;15(6):356–365. DOI: 10.1038/s41574-019-0194-6

14. Yip S., Romano N., Gustafson P. et al. Elevated prolactin during pregnancy drives a phenotypic switch in mouse hypothalamic dopaminergic neurons. Cell Rep. 2019;26(7):1787–1799. DOI: 10.1016/j.celrep.2019.01.067

15. Gong N., Ferreira-Martins D., McCormick S. et al. Divergent genes encoding the putative receptors for growth hormone and prolactin in sea lamprey display distinct patterns of expression. Sci. Rep. 2020;10(1):1674. DOI: 10.1038/s41598-020-58344-5

16. Al-Kuraishy H.M., Al-Gareeb A.I., Awad M.S. et al. Assessment of serum prolactin levels in acute myocardial infarction: the role of pharmacotherapy. Ind. J. Endocrinol. Metab. 2016. 20(1):72– 79. DOI: 10.4103/2230-8210.172240 1

17. Liu Y., Jiang J., Lepik B. et al. Subdomain 2, not the transmembrane domain, determines the dimerization partner of growth hormone receptor and prolactin receptor. Endocrinology. 2017;158(10):3235– 3248. DOI: 10.1210/en.2017-00469

18. Aoki M., Wartenberg P., Grünewald R. et al. Widespread cell-specific prolactin receptor expression in multiple murine organs. Endocrinology. 2019;160(11):2587–2599. DOI: 10.1210/en.2019-00234

19. Sykes L., MacIntyre D.A., Yap X.J. et al. Changes in the Th1: Th2 cytokine bias in pregnancy and the effects of the anti-inflammatory cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2. Mediators Inflamm. 2012;2012:416739. DOI: 10.1155/2012/4167 39.10.1155/2012/416739

20. Parra J., Ramírez-Peredo E., et al. Moderate hyperprolactinemia is associated with survival in patients with acute graft-versus-host disease after allogeneic stem cell transplantation. Hematology. 2012;17(2):85–92. DOI: 10.1179/102453312X13221316477930

21. Yu-Lee L.-Y. Prolactin modulation of immune and inflammatory responses. Recent Prog. Horm. Res. 2002;57:435–455. DOI: 0.1210/ rp.57.1.435

22. Chuang E., Molitch M. Prolactin and autoimmune diseases in humans. Acta Biomed. 2007;78(Suppl 1):255–261.

23. Adán N., Guzmán-Morales J., Ledesma-Colunga M.G. et al. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J. Clin. Invest. 2013;123(9):3902–3913. DOI: 10.1172/JCI69485

24. Imrich R. The role of neuroendocrine system in the pathogenesis of rheumatic disease (minireview). Endocr. Regul. 2002.36(2):95–106.

25. Shelly S., Boaz M., Orbach H. Prolactin and autoimmunity. Autoimmun. Rev. 2011;11 (6–7):A465–A470. DOI: 10.1016/j.autrev.2011.11.009

26. Wu X., Liu Y., Guo X. et al. Prolactin inhibits the progression of intervertebral disc degeneration through inactivation of the NF-κB pathway in rats. Cell Death Dis. 2018;9(2):98. DOI: 10.1038/ s41419-017-0151-z

27. Borba V., Zandman-Goddard G., Shoenfeld Y. Prolactin and autoimmunity: the hormone as an inflammatory cytokine. Best Pract. Res. Clin. Endocrinol. Metab. 2019;33(6):101324. DOI: 10.1016/j.beem.2019.101324

28. Williams L., Sarma U., Willets K. et al. Expression of constitutively active STAT3 can replicate the cytokine-suppressive activity of interleukin-10 in human primary macrophages. J. Biol. Chem. 2007;282(10):6965–6975. DOI: 10.1074/jbc.M609101200

29. Tripathi A., Sodhi A. Prolactin-induced production of cytokines in macrophages in vitro involves JAK/STAT and JNK MAPK pathways. Int. Immunol. 2008;20(3):327–336. DOI: 10.1093/intimm/dxm145

30. Retnoningrum D., Hendrianingtyas M., Istiadi H. et al. Correlation between prolactin serum with neutrophil lymphocyte ratio (NLR) in systemic inflammatory response syndrome. Diponegoro Int. Med. 2021;J2(1):10–13.

31. Wu W., Sun M., Zhang H. et al. Prolactin mediates psychological stress-induced dysfunction of regulatory T cells to facilitate intestinal inflammation. Gut. 2014;63(12):1883–1892. DOI: 10.1136/gutjnl-2013-306083

32. Al-Kuraishy H.M., Al-Gareeb A.I., Butnariu M. et al. The crucial role of prolactin-lactogenic hormone in COVID-19. Mol. Cell. Biochem. 2022. 477:1381–1392. DOI: 10.1007/s11010-022-04381-9

33. Barrett R., Narasimhulu C., Parthasarathy S. Adrenergic hormones induce extrapituitary prolactin gene expression in leukocytespotential implications in obesity. Sci. Rep. 2018; 8(1):1936. DOI: 10.1038/s41598-018-20378-1

34. Al-Kuraishy H.M., Al-Gareeb A.I., Al-Maiahy T.J. Concept and connotation of oxidative stress in preeclampsia. J. Lab. Phys. 2018;10(3):276–282. DOI: 10.4103/JLP.JLP_26_18

35. Buyvalenko U.V., Perepelova M.A., Zolotareva R.A. et al. Pituitary disease and COVID-19: a systematic review of the literature. Problems of Endocrinology. 2022;68(5):14–23. (in Russian). DOI: 10.14341/probl13108

36. Jin J.M., Bai P., He W. et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;8:152. DOI: 10.3389/fpubh.2020.00152

37. Liu D., Li L., Wu X. et al. Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: а preliminary analysis. Am. J. Roentgenol. 2020; 215(1):127–132. DOI: 10.2214/AJR.20.23072

38. Liu H., Wang L.-L., Zhao S.-J. et al. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J. Reprod. Immunol. 2020;139:103122. DOI: 10.1016/j.jri.2020.103122

39. Fuxe K., Andersson K., Enroth P. et al. Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. Psychoneuroendocrinology. 1989;14(1–2):19–41. DOI: 10.1016/0306-4530(89)90054-1

40. Bevelacqua J.J., Masoompour S.M., Mortazavi S.A.R., Mortazavi S.M.J. Why do some reports claim that the number of COVID-19 hospitalized smokers is smaller than expected? J. Biomed. Phys. Eng. 2020;10(5):659–662. DOI: 10.31661/jbpe.v0i0.2007-1144

41. González-Rubio J., Navarro-López C., López-Nájera E. et al. A systematic review and meta-analysis of hospitalised current smokers and COVID-19. Int. J. Environ. Res. Public Health. 2020;17(20):7394. DOI: 10.3390/ijerph17207394

42. Petrulli J.R., Kalish B., Nabulsi N.B. et al. Systemic inflammation enhances stimulant-induced striatal dopamine elevation. Transl. Psychiatry. 2017;7(3):e1076. DOI: 10.1038/tp.2017.18

43. Jara L.J., López-Zamora B., Ordoñez-González I. et al. The immuneneuroendocrine system in COVID-19, advanced age and rheumatic diseases. Autoimmun. Rev. 2021;20(11):102946. DOI: 10.1016/j. autrev.2021.102946

44. Li Y.-C., Bai W-Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020;92(6):552–555. DOI: 10.1002/jmv.25728

45. Pawlak R., Napiorkowska-Pawlak D., Takada Y. et al. The differential effect of angiotensin II and angiotensin 1-7 on norepinephrine, epinephrine, and dopamine concentrations in rat hypothalamus: the involvement of angiotensin receptors. Brain Res. Bull. 2001;54(6):689–694. DOI: 10.1016/S0361-9230(01)00489-0

46. Banday A.A., Diaz A.D., Lokhandwala M. Kidney dopamine D1-like receptors and angiotensin 1-7 interaction inhibits renal Na+ transporters. Am. J. Physiol. Renal. Physiol. 2019;317(4):F949– F956. DOI: 10.1152/ajprenal.00135.2019


Review

For citations:


Voevoda S.M., Rymar O.D. Prolactin as a Factor Influencing the Course of a New Coronavirus Infection: a Literary Review. Title. 2023;22(4):64-69. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-4-64-69

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)