Preview

Title

Advanced search

Factors in the Formation of Neoplastic Processes in the Cervix

https://doi.org/10.31550/1727-2378-2023-22-5-75-80

Abstract

   Aim: Review the literature data on the pathogenetic aspects of the formation of squamous intraepithelial lesions and the role of immunological mechanisms in the formation of this group of cervical diseases.

   Key Points. Cervical cancer (CC) is a multi-stage process that is often preceded by human papillomavirus (HPV)-associated intraepithelial lesions. The establishment of causal interactions between the virus and malignancy, as well as the study of epidemiological data, leads to the formation of models of cervical carcinogenesis: infection, persistence, progression to the precancerous stage, and finally, cervical cancer. Despite the clear and obvious path of malignancy, as well as the availability of generally available diagnostic methods in the arsenal of a practicing obstetrician-gynecologist, the assessment and prediction of the further development of cervical pathologies in patients of active reproductive age remains difficult. In general, cervical cancer can be considered an excellent model for understanding the staging of malignancy processes, which will be primarily associated with the impact of human papillomavirus infection and changes in the immunological aspects of endo- and exo-cervix.

   Conclusion. An analysis of sources published in the Cochrane Librare, Google Scolare and PubMed systems was carried out. In recent years, the understanding of human papillomavirus-associated tumor interaction with the host immune system has improved, so the development of new approaches targeting immune checkpoints has sparked interest in the use of immunotherapy in cervical cancer. CC is curable if detected at an early stage. However, reliable diagnostic and prognostic markers related to the physiological and pathological regulation of cervical cancer are currently not available. Therefore, the approach to the treatment of cervical cancer has remained unchanged for several decades, and new diagnostic strategies are currently required, due to the interaction of the immune system and the virus.

About the Author

O. I. Artemova
Penza State University
Russian Federation

440026; 40 Krasnaya Str.; Penza



References

1. Gizinger O.A., Radzinskiy V.E. Human papillomavirus: pathogenesis and correction of immune disturbances. Doctor.ru. 2021;20(6):80–86. (in Russian). DOI: 10.31550/1727-2378-2021-20-6-80-86

2. Anokhova L.I., Belokrinitskaya T.Y., Belozertseva E.P., Maslova T.M. An innovative approach to the treatment of high-risk HPV patients using allokin-alpha. Medical Council. 2021;(13):199–205. (in Russian). DOI: 10.21518/2079-701X-2021-13-199-205

3. Kang S.D., Chatterjee S., Alam S. et al. Effect of productive human papillomavirus 16 infection on global gene expression in cervical epithelium. J. Virol. 2018;92(20):e01261–18. DOI: 10.1128/JVI.01261-18

4. Zhukova A.B. Squamous intraepithelial lesions of the cervix: a modern view of etiology, pathogenesis, and diagnosis. Journal of obstetrics and women's diseases. 2019;68(6):86–97. (in Russian). DOI: 10.17816/JOWD68687-98

5. van Zummeren M., Kremer W.W., Leeman A. et al. HPV E4 expression and DNA hypermethylation of CADM1, MAL, and miR124-2 genes in cervical cancer and precursor lesions. Modern Pathol. 2018;31(12):1842–1850. DOI: 10.1038/s41379-018-0101-z

6. Przybylski M., Pruski D., Millert-Kalińska S. et al. Expression of E4 protein and HPV Major Capsid Protein (L1) as a novel combination in squamous intraepithelial lesions. Biomedicines. 2023;11(1):225. DOI: 10.3390/biomedicines11010225

7. Kosenko I.A., Kostevich G.V., Artemeva T.P. et al. The question about pathogenesis, diagnosis and treatment, of a virus-associated cervical pathology. International Reviews: Clinical Practice and Health. 2017;1:7–18. (in Russian).

8. Makatsariya A.D., Bitsadze V.O., Khizroeva J.Kh. et al. Efficacy and safety of glucosaminylmuramyl dipeptide in treatment of human papillomavirus-associated diseases : a systematic review. Obstetrics, Gynecology and Reproduction. 2019;13(2):132–154. (in Russian). DOI: 10.17749/2313-7347.2019.13.2.132-154

9. Mantoani P.T., Siqueira D.R., Jammal M.P. et al. Immune response in cervical intraepithelial neoplasms. Eur. J. Gynaecol. Oncol. 2021;42(5):973–981. DOI: 10.31083/j.ejgo4205146

10. Lugoviс-Mihiс L., Cvitanoviс H., Djakoviс I. et al. The influence of psychological stress on HPV infection manifestations and carcinogenesis. Cell Physiol. Biochem. 2021;55(S2):71–88. DOI: 10.33594/000000395

11. Chaberek K., Mrowiec M., Kaczmarek M. et al. The creation of the suppressive cancer microenvironment in patients with HPV-positive cervical cancer. Diagnostics. 2022;12(8):1906. DOI: 10.3390/diagnostics12081906

12. Bonin-Jacob C.M., Almeida-Lugo L.Z., Puga M.A.M. et al. IL-6 and IL-10 in the serum and exfoliated cervical cells of patients infected with high-risk human papillomavirus. PLoS One. 2021;16(3):e0248639. DOI: 10.1371/journal.pone.0248639

13. Zeng H., Liu M., Xiao L. et al. Effectiveness and immune responses of focused ultrasound ablation for cervical intraepithelial neoplasia. Int. J. Hyperthermia. 2022;39(1):539–546. DOI: 10.1080/02656736.2022.2052365

14. Bonin C.M., Padovani C.T., Ferreira A.M. et al. Predominant overexpression of CD25/FOXP3, IFN-γ, and suppressive cytokines in high-grade lesion samples infected with human papillomavirus. J. Bras. Patol. Med. Lab. 2017;53:53–60. DOI: 10.5935/1676-2444.20170004

15. Kutsenko I.I., Borovikov I.O., Kravtsova E.I. et al. Low-grade squamous cell intraepithelial lesion: possibilities of cytokine therapy. Issues of Practical Colposcopy & Genital Infections. 2022;4:30–35. (in Russian). DOI: 10.46393/27826392_2022_4_30

16. Alves J.J.P., De Medeiros Fernandes T.A.A., De Araújo J.M.G. et al. Th17 response in patients with cervical cancer. Oncol. Lett. 2018;16(5):6215–6227. DOI: 10.3892/ol.2018.9481

17. Song D., Li H., Li H., Dai J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer (Review). Oncol. Lett. 2015;10(2):600–606. DOI: 10.3892/ol.2015.3295

18. Artaza-Irigaray C., Molina-Pineda A., Aguilar-Lemarroy A. et al. E6/E7 and E6* from HPV16 and HPV18 upregulate IL-6 expression independently of p53 in keratinocytes. Front. Immunol. 2019;10:1676. DOI: 10.3389/fimmu.2019.01676

19. Pagni R.L., Souza P.D.C., Pegoraro R. et al. Interleukin-6 and indoleamine-2,3-dioxygenase as potential adjuvant targets for Papillomavirus-related tumors immunotherapy. Front. Immunol. 2022;13:1005937. DOI: 10.3389/fimmu.2022.1005937

20. Safarova I.А., Gaziev A.Y. The role of pro- and anti-inflammatory cytokines as well as endogenous antimicrobial peptides in the pathogenesis of cervical disease. Meditsinskie novosti. 2018;(5):27–29. (in Russian).

21. Long T., Long L., Chen Y. et al. Severe cervical inflammation and high-grade squamous intraepithelial lesions: a cross-sectional study. Arch. Gynecol. Obstet. 2021;303(2):547–556. DOI: 10.1007/s00404-020-05804-y

22. Moshi J.M., Ummelen M., Broers J.L.V. et al. SOX2 expression in the pathogenesis of premalignant lesions of the uterine cervix: its histo-topographical distribution distinguishes between low- and high-grade CIN. Histochem. Cell Biol. 2022;158:545–559. DOI: 10.1007/s00418-022-02145-6

23. Yellon S.M. Immunobiology of cervix ripening. Front. Immunol. 2020;10:3156. DOI: 10.3389/fimmu.2019.03156

24. Jin B.Y., Campbell T.E., Draper L.M. et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight. 2018;3(8):e99488. DOI: 10.1172/jci.insight.99488

25. Maver P.J., Poljak M. Primary HPV-based cervical cancer screening in Europe: implementation status, challenges, and future plans. Clin. Microbiol. Infect. 2020;26(5):579–583. DOI: 10.1016/j.cmi.2019.09.006

26. Lee S.B., Lee S., Park J.Y. et al. Induction of p53-dependent apoptosis by prostaglandin A2. Biomolecules. 2020;10(3):492. DOI: 10.3390/biom10030492

27. Jee B., Yadav R., Pankaj S., Shahi S.K. Immunology of HPV-mediated cervical cancer: current understanding. Int. Rev. Immunol. 2021;40(5):359–378. DOI: 10.1080/08830185.2020.1811859

28. Ketelut-Carneiro N., Fitzgerald K.A. Apoptosis, pyroptosis, and necroptosis — oh my! The many ways a cell can die. J. Mol. Biol. 2022;434(4):167378. DOI: 10.1016/j.jmb.2021.167378

29. Kashyap D., Garg V.K., Goel N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol. 2021;125:73–120. DOI: 10.1016/bs.apcsb.2021.01.003

30. Yu G., Luo H., Zhang N. et al. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation. Int. J. Mol. Sci. 2019;20(24):6268. DOI: 10.3390/ijms20246268

31. Pruski P., Correia G.D.S., Lewis H.V. et al. Direct on-swab metabolic profiling of vaginal microbiome host interactions during pregnancy and preterm birth. Nat. Commun. 2021;12(1):5967. DOI: 10.1038/s41467-021-26215-w

32. Fujiwara H., Suzuki M., Morisawa H. et al. The impact of triage for atypical squamous cells of undetermined significance with human papillomavirus testing in cervical cancer screening in Japan. Asian Pac. J. Cancer Prev. 2019;20(1):81–85. DOI: 10.31557/APJCP.2019.20.1.81

33. Wang Z., Chen X., Liu N. et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol. Ther. 2021;29(1):263–274. DOI: 10.1016/j.ymthe.2020.09.024

34. Sugiura R., Satoh R., Takasaki T. ERK: a double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells. 2021;10(10):2509. DOI: 10.3390/cells10102509

35. Lee S.B., Lee S., Park J.Y. et al. Induction of p53-dependent apoptosis by prostaglandin A2. Biomolecules. 2020;10(3):492. DOI: 10.3390/biom10030492

36. Usyk M., Zolnik C.P., Castle P.E. et al. Cervicovaginal microbiome and natural history of HPV in a longitudinal study. PLoS Pathog. 2020;16(3):e1008376. DOI: 10.1371/journal.ppat.1008376

37. Villanova L., Careccia S., De Maria R., Fiori M.E. Micro-economics of apoptosis in cancer: ncRNAs modulation of BCL-2 family members. Int. J. Mol. Sci. 2018;19(5):962. DOI: 10.3390/ijms19040958

38. Vinogradova O.P., Artemova O.I., Andreeva N.A., Epifanova O.V. Changes in immune response factors in therapy of cervical intraepithelial neoplasia. Siberian Medical Review. 2022;(6):71–77. DOI: 10.20333/25000136-2022-6-71-77

39. Wright T., Schiffman M., Solomon D. Interim guidance for the use of human papillomavirus DNA testing as an adjunct to cervical cytology for screening. Obstet. Gynecol. 2016;103(2):304–309. DOI: 10.1097/01.AOG.0000109426.82624.f8

40. Vinogradova O.P., Andreeva N.A., Artemova O.I., Epifanova O.V. Cervical stage II intraepithelial neoplasia: antivirals efficacy. Doctor.Ru. 2022;21(1):54–58. DOI: 10.31550/1727-2378-2022-21-1-54-58

41. Uijterwaal M., Kocken M., Berkhof J. Posttreatment assessment of women at risk of developing high-grade cervical disease: proposal for new guidelines based on data from the Netherlands. J. Low Genit. Tract Dis. 2019;18(4):338–343. DOI: 10.1097/LGT.000000000000001


Review

For citations:


Artemova O.I. Factors in the Formation of Neoplastic Processes in the Cervix. Title. 2023;22(5):75-80. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-5-75-80

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)