Preview

Title

Advanced search

Correction of Metabolic Disorders in Patients with Type 2 Diabetes Mellitus Using a Type 2 Sodium-Glucose Cotransporter Inhibitor

https://doi.org/10.31550/1727-2378-2023-22-4-53-58

Abstract

Aim: Comprehensive (clinical, laboratory, instrumental) assessment of the clinical efficacy of metabolic disorders correction in patients with type 2 diabetes mellitus using a type 2 sodium-glucose cotransporter inhibitor.

Design: Randomized comparative study.

Materials and methods. A 26-week study included 130 patients with the presence of visceral obesity (56.3 ± 2.1 years) who did not reach the target parameters of glycated hemoglobin (HbA1c) on metformin monotherapy 2 g/day. The main group (68 people) received canagliflozin 300 mg/day, in combination with metformin 2 g/day; the control group (62 people) continued to receive monotherapy with metformin 2 g/day. At baseline and in 6 months, all patients underwent laboratory and instrumental examination methods, which included an assessment of carbohydrate metabolism (fasting glycemia (FG), postprandial glycemia (PPG), HbA1c); lipid profile (cholesterol levels, high and low density lipoproteins, triglycerides); content of adipocytokines- adiponectin (ADN), leptin (L). Visceral fat area (AVF) was assessed using a bioimpedance analyzer and magnetic resonance imaging (MRI) at the L4 level.

Results. In 6 months, both groups showed significant positive dynamics of FG, PPG and HbA1c. In main group, HbA1c decreased by 2.7 ± 0.3% (p < 0.01), in control group by 0.2 ± 0.1% (p < 0.01). The FG and PPG levels in main group decreased by 4.5 ± 0.4 mmol/L (p < 0.01 ) and 5.8 ± 0.5 mmol/L (p < 0.01), respectively, in control group by 1.3 ± 0.2 mmol/L (p < 0.01) and 1.7 ± 0.4 mmol/L (p < 0.01). The level ADN in main group increased by 102.8 ± 4.8 mcg/ml (p < 0.01), in control group by 8.2 ± 2.1 mcg/ml (p < 0.01). L in main group decreased by 10.3 ± 0.9 ng/ml (p < 0.01), in control group by 4.1 ± 0.7 ng/ml (p < 0.01). In main group, there was a decrease in the VFA of by 18.6 ± 2.3 cm2 (p < 0.01) according to MRI, in control group by 4.7 ± 2.4 cm2 (p < 0.01). According to bioimpedance analysis, there was a decrease in the area of AVF by 26.7 ± 3.2 cm2 (p < 0.01) in the main group, and by 4.7 ± 2.5 cm2 (p < 0.01) in the control group.

Conclusion. Combination therapy with canagliflozin and metformin makes it possible to achieve high clinical efficacy of carbohydrate metabolism correction in combination with a decrease in visceral fat depot and normalization levels of the main markers of metabolic health. 

About the Authors

A. V. Zhigareva
Russian Medical Academy of Continuous Professional Education
Russian Federation

2/1 Barrikadnaya Str., build. 1, Moscow, 125993



A. S. Ametov
Russian Medical Academy of Continuous Professional Education
Russian Federation

2/1 Barrikadnaya Str., build. 1, Moscow, 125993



H. H. Sharafetdinov
Russian Medical Academy of Continuous Professional Education; Federal Research Centre of Nutrition, Biotechnology and Food Safety; 8 Trubetskaya Str., build. 2, Moscow, 119991
Russian Federation

2/1 Barrikadnaya Str., build. 1, Moscow, 125993; 2/14 Ust`insky pr-d, Moscow,  109240; I.M. Sechenov First Moscow State Medical University (Sechenov University)



E. Yu. Pashkova
Botkin Hospital
Russian Federation

5 2nd Botkinsky pr-d, Moscow, 125284



References

1. Dedov I.I., Shestakova M.V., Vikulova O.K., Zheleznyakova A.V. et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes Mellitus. 2023;26(2):104–23. (in Russian). DOI: 10.14341/DM13035

2. Ahmad E., Lim S., Lamptey R., Webb D.R. et al. Type 2 diabetes. Lancet. 2022;400(10365):1803–20. DOI: 10.1016/S0140-6736(22)01655-5

3. Leonova N.V., Chumakova G.A., Tsirikova A.V. Comparison of obesity related cardiometabolic risks in diabetes type 1 and 2. Russian Journal of Cardiology. 2017;4:47–53. (in Russian). DOI: 10.15829/1560-4071-2017-4-47-53

4. Feng Y., Zhao Y., Liu J., Huang Z. et al. Consumption of dairy products and the risk of overweight or obesity, hypertension, and type 2 diabetes mellitus: a dose-response meta-analysis and systematic review of cohort studies. Adv. Nutr. 2022;13(6):2165–79. DOI: 10.1093/advances/nmac096

5. Xu B., Li S., Kang B., Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc. Diabetol. 2022;21(1):83. DOI: 10.1186/s12933-022-01512-w

6. Bhosle D., Indurkar S., Quadri U., Chandekar B. A comparative study of efficacy and safety of different sodium glucose co-transporter 2 (SGLT-2) inhibitors in the management of patients with type II diabetes mellitus. J. Assoc. Physicians India. 2022;70(6):11–12. DOI: 10.5005/japi-11001-0001

7. Perepech N.B., Mikhailova I.E. Sodium-glucose cotransporter type 2 inhibitors: successful running after two hares. Russian Journal of Cardiology. 2021;26(2S):4534. (in Russian). DOI: 10.15829/1560-4071-2021-4534

8. Kenny H.C., Abel E.D. Heart failure in type 2 diabetes mellitus. Circ. Res. 2019;124(1): 121–41. DOI: 10.1161/CIRCRESAHA.118.311371

9. Bondarenko V.M., Marchuk V.P., Pimanov S.I., Mikhaylova N.A. et al. Correlation of the content of visceral adipose tissue according to computed tomography data with anthropometric parameters and ultrasound results. Bulletin of Vitebsk State Medical University. 2013;1:31–8. (in Russian)

10. Kishida K., Funahashi T., Shimomura I. Molecular mechanisms of diabetes and atherosclerosis: role of adiponectin. Endocr. Metab. Immune Disord. Drug Targets. 2012;12(2):118–31. DOI: 10.2174/187153012800493468

11. Choi H.M., Doss H.M., Kim K.S. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci. 2020;21(4):1219. DOI: 10.3390/ijms21041219

12. Yanai H., Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives. Int. J. Mol. Sci. 2019;20(5):1190. DOI: 10.3390/ ijms20051190

13. Kumar R., Mal K., Razaq M., Magsi M. et al. Association of leptin with obesity and insulin resistance. Cureus. 2020;12(12): e12178. DOI: 10.7759/cureus.12178

14. Shevchenko E.A., Potemina T.E., Uspensky A.N. Role of adiponectin and leptin in the development of metabolic syndrome and related obesity and type II diabetes mellitus. Bulletin of the Medical Institute “Reaviz” (Rehabililitation, Doctor and Health). 2022;1:29–37. (in Russian). DOI: 10.20340/vmi-rvz.2022.1.CLIN.3

15. Dzugkoeva S.G., Dzugkoeva F.S., Mozhaeva I.V., Margieva O.I. Adipokines, obesity and metabolic disorders. Modern Problems of Science and Education. 2020; 6:201. (in Russian). DOI: 10.17513/spno.30321

16. Henning R.J. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491–509. DOI: 10.2217/fca-2018-0045

17. Taylor S.I., Yazdi Z.S., Beitelshees A.L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Invest. 2021;131(2):e142243. DOI: 10.1172/JCI142243

18. Perry R.J., Shulman G.I. Sodium-glucose cotransporter-2 inhibitors: understanding the mechanisms for therapeutic promise and persisting risks. J. Biol. Chem. 2020;295(42):14379–90. DOI: 10.1074/jbc. REV120.008387

19. Salukhov V.V., Kotova M.E. Main effects caused by SGLT2 inhibitors in patients with type 2 diabetes and the mechanisms that determine them. Endocrinology: News, Opinions, Training. 2019;8(3):61–74. (in Russian). DOI: 10.24411/2304-9529-2019-13007

20. Unamuno X., Gómez-Ambrosi J., Rodríguez A., Becerril S. et al. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Invest. 2018;48(9):e12997. DOI: 10.1111/eci.12997

21. Salukhov V.V., Ilyinskaya T.A., Minakov A.A. Influence of modern antidiabetic therapy on body weight in patients with type 2 diabetes mellitus. Endocrinology: News, Opinions, Training. 2022;11(1):39–52. (in Russian). DOI: 10.33029/2304-9529-2022-11-1-39-52

22. Fang H., Berg E., Cheng X., Shen W. How to best assess abdominal obesity. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21(5):360–5. DOI: 10.1097/MCO.0000000000000485

23. Vilalta A., Gutiérrez J.A., Chaves S., Hernández M. et al. Adipose tissue measurement in clinical research for obesity, type 2 diabetes and NAFLD/NASH. Endocrinol. Diabetes Metab. 2022;5(3):e00335. DOI: 10.1002/edm2.335

24. Wu P., Wen W., Li J., Xu J. et al. Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm. Metab. Res. 2019;51(8):487–94. DOI: 10.1055/a-0958-2441

25. Garvey W.T., Van Gaal L., Leiter L.A., Vijapurkar U. et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–7. DOI: 10.1016/j.metabol.2018.02.002


Review

For citations:


Zhigareva A.V., Ametov A.S., Sharafetdinov H.H., Pashkova E.Yu. Correction of Metabolic Disorders in Patients with Type 2 Diabetes Mellitus Using a Type 2 Sodium-Glucose Cotransporter Inhibitor. Title. 2023;22(4):53-58. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-4-53-58

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)