Preview

Title

Advanced search

Potential of Trans-Resveratrol in the Prevention of Menopausal Disorders and Age-Associated Morbidity

https://doi.org/10.31550/1727-2378-2023-22-5-62-68

Abstract

   Aim: to investigate alternative option to prevent age-associated pathology in women, caused, by progressive decrease of estrogen level during the menopausal transition period.

   Key points. If there are contraindications to the menopausal hormone therapy or at the examination stage, the choice of alternative methods for prevention and treatment of menopausal symptoms and systemic metabolic disorders should correspond to a high safety and efficacy profile. This review describes in detail the pharmacological effects of the phytoestrogen resveratrol, the mechanisms of the implementation of estrogen-like, antiproliferative, anti-inflammatory and antioxidant effects and the possibility of clinical use in the form of dietary supplements.

   Conclusion. The prescription of the phytoestrogen trans-resveratrol is an alternative approach to the relief of menopausal disorders and the prevention of systemic metabolic disorders. Possessing as high bio-active and optimal safe alternative due to trans-isomer form, it is the optimal non-hormonal remedy for correcting menopausal symptoms, inhibiting some aging processes, and also has a significant potential for preventing age-related diseases.

About the Author

P. V. Kozlov
Pirogov Russian National Research Medical University
Russian Federation

117997; 1 Ostrovityanova Str.; Moscow



References

1. Adamyan L.V., Ashrafyan L.A., Andreeva E.N. et al. Menopause and female climacteric states. Clinical Guidelines. 86 p. (in Russian).

2. Koushki M., Amiri-Dashatan N., Ahmadi N. et al. Resveratrol: a miraculous natural compound for diseases treatment. Food Sci. Nutr. 2018;6(8):2473–2490. DOI: 10.1002/fsn3.855

3. Pezzuto J. Resveratrol: Twenty years of growth, development and controversy. Biomol. Ther. 2019;27:1–14. DOI: 10.4062/biomolther.2018.176

4. Sessa M., Balestrieri M.L., Ferrari G. et al. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 2014;147:42–50. DOI: 10.1016/j.foodchem.2013.09.088

5. Chimento A., De Amicis F., Sirianni R. et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci. 2019;20:1381. DOI: 10.3390/ijms20061381

6. Gambini J., Ingles M., Olaso G. et al. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev. 2015;2015:837042. DOI: 10.1155/2015/837042

7. Patel K.R., Scott E., Brown V.A. et al. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci. 2011;1215:161–169. DOI: 10.1111/j.1749-6632.2010.05853.x

8. Ruotolo R., Calani L., Fietta E. et al. Antiestrogenic activity of a human resveratrol metabolite. Nutr. Metab. Cardiovasc. Dis. 2013;23(11):1086–1092. DOI: 10.1016/j.numecd.2013.01.002

9. Filippova O.V. Phytoestrogens: perspectives of administration. Effective Pharmacotherapy. 2020;16(22):30–36. (in Russian).

10. Bowers J.L., Tyulmenkov V.V., Jernigan S.C., Klinge C.M. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology. 2000;14(10):3657–3667. DOI: 10.1210/endo.141.10.7721

11. Leo L., Surico D., Deambrogio F. et al. Preliminary data on the effectiveness of resveratrol in a new formulation in treatment of hot flushes. Minerva Ginecol. 2015;67(5):475–83.

12. Wong R.H., Thaung Zaw J.J., Xian C.J., Howe P.R. Regular supplementation with resveratrol improves bone mineral density in postmenopausal women: a randomized, placebo-controlled trial. J. Bone Miner. Res. 2020;35(11):2121–2131. DOI: 10.1002/jbmr.4115

13. Uberti F., Morsanuto V., Aprile S. et al. Biological effects of combined resveratrol and vitamin D3 on ovarian tissue. J. Ovarian Res. 2017;10(1):61. DOI: 10.1186/s13048-017-0357-9

14. Milia R. Improvement of climacteric symptoms with a novel sublingual product containing trans-resveratrol. Progr. Nutr. 2015;17(1):68–72.

15. Sukhikh G.T., Serov V.N., Adamyan L.V. et al. Algorithms for the management of patients with endometriosis: an agreed position of experts from the russian society of obstetricians and gynecologists. Obstetrics and gynecology. 2023;(5):159–176. doi: 10.18565/aig.2023.132

16. Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;24:e00370. DOI: 10.1016/j.btre.2019.e00370

17. Desmawati D., Sulastri D. Phytoestrogens and their health effect. Open Access Maced. J. Med. Sci. 2019;7(3):495–499. DOI: 10.3889/oamjms.2019.044

18. Woodward K.A., Draijer R., Thijssen D.H., Low D.A. Polyphenols and microvascular function in humans : a systemic review. Curr. Pharm. Design. 2018;24:203–226. DOI: 10.2174/1381612823666171109103939

19. Zhou Y., Zheng J., Li Y. et al. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016;8:515. DOI: 10.3390/nu8080515

20. Ferraz da Costa D.C., Pereira Rangel L., Quarti J. et al. Bioactive compounds and metabolites from grapes and red wine in breast cancer chemoprevention and therapy. Molecules 2020;25:3531. DOI: 10.3390/molecules25153531

21. Damianaki A., Bakogeorgou E., Kampa M. et al. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J. Cell Biochem. 2000;78:429–441. DOI: 10.1002/1097-4644(20000901)78:3<429::aid-jcb8>3.0.co;2-m

22. Carter L.G., D’Orazio J.A., Pearson K.J. Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer. 2014;21(3):R209–225. DOI: 10.1530/erc-13-0171

23. Venkatadri R., Muni T., Iyer A.K. et al. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis. 2016;7:e2104. DOI: 10.1038/cddis.2016.6

24. Chin Y.T., Hsieh M.T., Yang S.H. et al. Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro. Oncotarget. 2014;5(24):12891–12907. DOI: 10.18632/oncotarget.2632

25. Lee-Chang C., Bodogai M., Martin-Montalvo A. et al. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J. Immunol. 2013;191(8):4141–4151. DOI: 10.4049/jimmunol.1300606

26. Jang J.Y., Im E., Kim N.D. Mechanism of resveratrol-induced programmed cell death and new drug discovery against cancer : a review. Int. J. Mol. Sci. 2022;23:13689. DOI: 10.3390/ijms232213689

27. Ma C., Wang Y., Dong L. et al. Anti-inflammatory effect of resveratrol through the suppression of NF-kappa B and JAK/STAT signaling pathways. Acta Biochim. Biophys. Sin. 2015;47:207–213. DOI: 10.1093/abbs/gmu135

28. Donnelly L.E., Newton R., Kennedy G.E. et al. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol. 2004;287:L774–L783. DOI: 10.1152/ajplung.00110.2004

29. Singh A., Yau Y.F., Leung K.S. et al. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain–liver–gut axis. Antioxidants. 2020;9(8):669. DOI: 10.3390/antiox9080669

30. Hou Y., Zhang Y., Mi Y. et al. A novel quinolyl-substituted analogue of resveratrol inhibits lps-induced inflammatory responses in microglial cells by blocking the NF-B/MAPK signaling pathways. Mol. Nutr. Food. Res. 2019;63(20):e1801380. DOI: 10.1002/mnfr.201801380

31. Hu W., Yang E., Ye J. et al. Resveratrol protects neuronal cells from isoflurane-induced inflammation and oxidative stress-associated death by attenuating apoptosis via Akt/p38 MAPK signaling. Exp. Ther. Med. 2018;15:1568–1573. DOI: 10.3892/etm.2017.5527

32. Qi B., Shi C., Meng J. et al. Resveratrol alleviates ethanol-induced neuroinflammation in vivo and in vitro: involvement of TLR2-MyD88-NF-kappa B pathway. Int. J. Biochem. Cell Biol. 2018;103:56–64. DOI: 10.1016/j.biocel.2018.07.007

33. Movahed A., Nabipour I., Lieben Louis X. et al. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid. Based Complement Alternat. Med. 2013;2013:851267. DOI: 10.1155/2013/851267

34. Brasnyó P., Molnár G.A., Mohás M. et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106(3):383–389. DOI: 10.1155/2013/851267

35. Liu K., Zhou R., Wang B., Mi M.T. Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2014;99(6):1510–1519. DOI: 10.3945/ajcn.113.082024

36. Zamora-Ros R., Urpi-Sarda M., Lamuela-Raventós R.M. et al. High urinary levels of resveratrol metabolites are associated with a reduction in the prevalence of cardiovascular risk factors in high-risk patients. Pharmacol. Res. 2012;65(6):615–620. DOI: 10.1016/j.phrs.2012.03.009

37. Magrone T., Magrone M., Russo M.A., Jirillo E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: in vitro and in vivo studies. Antioxidants (Basel). 2019;9(1):35. DOI: 10.3390/antiox9010035

38. Xiao K., Ma X.H., Zhong Z. et al. Low-dose trans-resveratrol ameliorates diabetes-induced retinal ganglion cell degeneration via TyrRS/c-Jun pathway. Invest. Ophthalmol. Vis. Sci. 2023;64(7):2. DOI: 10.1167/iovs.64.7.2

39. Guo L., Zhang X., Lv N. et al. Therapeutic role and potential mechanism of resveratrol in atherosclerosis: TLR4/NF-κB/HIF-1α. Mediators Inflamm. 2023;2023:1097706. DOI: 10.1155/2023/1097706

40. Singh A., Yau Y.F., Leung K.S. et al. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain–liver–gut axis. Antioxidants (Basel). 2020;9(8):669. DOI: 10.3390/antiox9080669

41. Liu L.L., He J.H., Xie H.B. et al. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult. Sci. 2014;93(1):54–62. DOI: 10.3382/ps.2013-03423

42. Lastra C.A., Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res. 2005;49(5):405–430. DOI: 10.1002/mnfr.200500022

43. Kohandel Z., Darrudi M., Naseri K. et al. The role of resveratrol in aging and senescence: a focus on molecular mechanisms. Curr. Mol. Med. 2023. DOI: 10.2174/1566524023666230602162949

44. Qu L., Yu Y., Qiu L. et al. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-KB in osteoblasts. J. Oral Microbiol. 2017;9(1):1317578. DOI: 10.1080/20002297.2017.1317578

45. Kala R., Shah H.N., Martin S.L., Tollefsbol T.O. Epigenetic-based combinatorial resveratrol and ptero-stilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent gamma-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer. 2015;15:672. DOI: 10.1186/s12885-015-1693-z

46. Leite Santos C., K Vizuete A.F., Becker Weber F. et al. Age-dependent effects of resveratrol in hypothalamic astrocyte cultures. Neuroreport. 2023;34(8):419–425. DOI: 10.1097/WNR.0000000000001906

47. Safer J.D. Thyroid hormone action on skin. Dermato-Endocrinology. 2011;3:211–215. DOI: 10.4161/derm.17027

48. Chen Y., Luga J. Brain-skin connection: stress, inflammation and skin health. Inflamm. Allergy Drug Targets. 2014;13:177–190. DOI: 10.2174/1871528113666140522104422

49. Lephart E.D., Naftolin F. Menopause and the skin: old favorites and new innovations in cosmeceuticals for estrogen-deficient skin. Dermatol. Ther. 2021;11:53–69. DOI: 10.1007/s13555-020-00468-7

50. Qasem R.J. The estrogenic activity of resveratrol : a comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Crit. Rev. Toxicol. 2020;5:439–462. DOI: 10.1080/10408444.2020.1762538

51. Lephart E.D. Equol’s efficacy is greater than astaxanthin for antioxidants, extracellular matrix integrity & breakdown, growth factors and inflammatory biomarkers via human skin gene expression analysis. J. Funct. Foods. 2019;59:380–393.

52. Chedea V.S., Vicas S.I., Sticozzi C. et al. Resveratrol: from diet to topical usage. Food Funct. 2017;8:3879–3892. DOI: 10.1039/C7FO01086A

53. Ratz-Lyko A., Arct J. Resveratrol as an active ingredient for cosmetic and dermatological applications : a review. J. Cosmet. Laser Ther. 2019;21:84–90. DOI: 10.1080/14764172.2018.1469767

54. Gugleva V., Zasheva S., Hristova M., Andonova V. Topical use of resveratrol: Technological aspects. Pharmacia. 2020;67:89–94. DOI: 10.3897/pharmacia.67.e48472

55. Hausenblas H. Effects of resveratrol and collagen supplementation on facial aging. Nat. Med. J. 2014;5:1–8.

56. Brinke A.S., Janssens-Bocker C., Kerscher M. Skin anti-aging benefits of a 2 % resveratrol emulsion. J. Cosmet. Dermatol. Sci. Appl. 2021;11:155–168.

57. Martinez J., Moreno J.J. Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem. Pharmacol. 2000;59(7):865–870. DOI: 10.1016/s0006-2952(99)00380-9

58. Thaung Zaw J.J., Howe P.R., Wong R.H. Long-term effects of resveratrol on cognition, cerebrovascular function and cardiometabolic markers in postmenopausal women: a 24-month randomised, double-blind, placebo-controlled, crossover study. Clin. Nutr. 2021;40(3):820–829. DOI: 10.1016/j.clnu.2020.08.025


Review

For citations:


Kozlov P.V. Potential of Trans-Resveratrol in the Prevention of Menopausal Disorders and Age-Associated Morbidity. Title. 2023;22(5):62-68. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-5-62-68

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1727-2378 (Print)
ISSN 2713-2994 (Online)