Adipocytokines Through the Prism of Human Metabolic Phenotypes
https://doi.org/10.31550/1727-2378-2023-22-4-18-23
Abstract
Aim: To study the features of adiponectin, leptin, resistin, adipsin, interleukin 6, and tumor necrosis factor α levels in individuals with a metabolically healthy and unhealthy phenotype at different values of body weight according to the literature.
Key points. The results of foreign and domestic studies of the levels of adipocytokines in metabolically healthy and unhealthy phenotypes in individuals with different body weights are presented. Adipokines such as adiponectin, leptin, resistin, adipsin, interleukin 6, and tumor necrosis factor α were analyzed. Data are given on the pathogenetic and clinical features of the production of these biologically active substances and their effect on metabolism.
Conclusion. According to the literature, high levels of leptin, resistin, tumor necrosis factor α, interleukin 6 are associated with a metabolically unhealthy phenotype, and adiponectin, adipsin are associated with a metabolically healthy phenotype.
About the Authors
V. I. AlferovaRussian Federation
175/1 Boris Bogatkov Str., Novosibirsk, 630089
S. V. Mustafina
Russian Federation
175/1 Boris Bogatkov Str., Novosibirsk, 630089
References
1. Alferova V.I., Mustafina S.V. The prevalence of obesity in the adult population of the Russian Federation (literature review). Obesity and Metabolism. 2022;19(1):96–105. (in Russian). DOI: 10.14341/omet12809
2. Simonova G.I., Mustafina S.V., Rymar O.D., Scherbacova L.V. et al. Metabolic syndrome and the risk of cardiovascular and all-cause mortality: data of 14-year prospective cohort study in Siberia. Russian Journal of Cardiology. 2020;25(6):3821. (in Russian). DOI: 10.15829/1560-4071-2020-3821
3. Muñoz-Garach A., Cornejo-Pareja I., Tinahones F.J. Does metabolically healthy obesity exist? Nutrients. 2016;8(6):320. DOI: 10.3390/ nu8060320
4. Mustafina S.V., Vinter D.A., Rymar O.D., Scherbacova L.V. et al. Obesity phenotypes and the risk of myocardial infarction: a prospective cohort study. Russian Journal of Cardiology. 2019;6:109–14. (in Russian). DOI: 10.15829/1560-4071-2019-6-109-114
5. Romantsova T.I., Ostrovskaya E.V. Metabolically healthy obesity: definitions, protective factors, clinical relevance. Almanac of Clinical Medicine. 2015;1(1):75–86. (in Russian). DOI: 10.18786/2072-0505-2015-1-75-86
6. Phillips C.M. Metabolically healthy obesity across the life course: epidemiology, determinants, and implications. Ann. N. Y. Acad. Sci. 2017;1391(1):85–100. DOI: 10.1111/nyas.13230
7. Spiridonov A.N., Khudiakova A.D., Ragino Yu.I. Adipokines/cytokines and disturbances in lipid metabolism. Ateroscleroz. 2022;18(2):157– 64. (in Russian). DOI: 10.52727/2078-256X-2022-18-2-157-164
8. Ryabova E.A., Ragino Yu.I. Proinflammatory adipokines and cytokines in abdominal obesity as a factor in the development of atherosclerosis and renal pathology. Ateroscleroz. 2021;17(4):101–10. (in Russian). DOI: 10.52727/2078-256X-2021-17-4-101-110
9. Khoramipour K., Chamari K., Hekmatikar A.A., Ziyaiyan A. et al. Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. Nutrients. 2021;13(4):1180. DOI: 10.3390/nu13041180
10. Francisco V., Pino J., Gonzalez-Gay M.A., Mera A. et al. Adipokines and inflammation: is it a question of weight? British J. Pharmacol. 2018;175(10):1569–79. DOI: 10.1111/bph.14181
11. Verbovoy A.F., Verbovaya N.I., Dolgikh Yu.A. Obesity is the basis of metabolic syndrome. Obesity and Metabolism. 2021;18(2):142–9. (in Russian). DOI: 10.14341/omet12707
12. Han W., Yang S., Xiao H., Wang M. et al. Role of adiponectin in cardiovascular diseases related to glucose and lipid metabolism disorders. Int. J. Mol. Sci., 2022;23(24):15627. DOI: 10.3390/ijms232415627
13. Tanyanskiy D.A., Denisenko A.D. The influence of adiponectin on carbohydrates, lipids, and lipoproteins metabolism: analysis of signaling mechanisms. Obesity and Metabolism. 2021;18(2):103–11. (in Russian). DOI: 10.14341/omet12754
14. Lopez-Yus M., Lopez-Perez R., Garcia-Sobreviela M.P., Del Moral-Bergos R. et al. Adiponectin overexpression in C2C12 myocytes increases lipid oxidation and myofiber transition. J. Physiol. Biochem. 2022;78(2):517– 25. DOI: 10.1007/s13105-021-00836-7
15. Wada T., Yamamoto Y., Takasugi Y., Ishii H. et al. Adiponectin regulates the circadian rhythm of glucose and lipid metabolism. J. Endocrinol. 2022;254(2):121–33. DOI: 10.1530/JOE-22-0006
16. Kosygina A.V. Adipocytokines in scientific and clinical practice. Obesity and Metabolism. 2011;8(1):32–9. (in Russian). DOI: 10.14341/2071-8713-5189
17. Ahl S., Guenther M., Zhao S., James R. et al. Adiponectin levels differentiate metabolically healthy vs unhealthy among obese and nonobese white individuals. J. Clin. Endocrinol. Metab. 2015;100(11):4172–80. DOI: 10.1210/jc.2015-2765
18. Doumatey A.P., Bentley A.R., Zhou J., Huang H. et al. Paradoxical hyperadiponectinemia is associated with the metabolically healthy obese (MHO) phenotype in African Americans. J. Endocrinol. Metab. 2012;2(2):51–65. DOI: 10.4021/jem95W
19. Aguilar-Salinas C.A., García E.G., Robles L., Riaño D. et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J. Clin. Endocrinol. Metab. 2008;93(10):4075–9. DOI: 10.1210/jc.2007-2724
20. Panova E.I., Pimankina M.S., Karataeva O.V. Clinical features and insulin resistance in men with a metabolically unhealthy obesity phenotype. The Russian Archives of Internal Medicine. 2020;10(4):288–95. (in Russian). DOI: 10.20514/2226-6704-2020-10-4-288-295
21. Boyarinova M.A., Orlov A.V., Rotar O.P., Alieva A.S. et al. Adipokines level in metabolically healthy obese Saint-Petersburg inhabitants (ESSE-RF). Kardiologiia. 2016;56(8):40–5. (in Russian). DOI: 10.18565/cardio.2016.8.40-45
22. Perakakis N., Farr O.M., Mantzoros C.S. Leptin in leanness and obesity: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021;77(6):745–60. DOI: 10.1016/j.jacc.2020.11.069
23. Villanueva-Carmona T., Cedó L., Madeira A., Ceperuelo-Mallafré V. et al. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab. 2023;35(4):601–19.e10. DOI: 10.1016/j.cmet.2023.03.004
24. Zhao S., Kusminski C.M., Elmquist J.K., Scherer P.E. Leptin: less is more. Diabetes. 2020;69(5):823–9. DOI: 10.2337/dbi19-0018
25. Salem A.M. Variation of leptin during menstrual cycle and its relation to the hypothalamic-pituitary-gonadal (HPG) axis: a systematic review. Int. J. Womens Health. 2021;13:445–58. DOI: 10.2147/IJWH.S309299
26. Jamar G., Caranti D.A., de Cassia Cesar H., Masquio D.C.L. et al. Leptin as a cardiovascular risk marker in metabolically healthy obese: hyperleptinemia in metabolically healthy obese. Appetite. 2017;108:477–82. DOI: 10.1016/j.appet.2016.11.013
27. Smirnova E.N., Shulkina S.G. Leptin, soluble leptin receptor, and free leptin index in patients with metabolic syndrome. Obesity and Metabolism. 2017;14(1):30–4. (in Russian). DOI: 10.14341/omet2017130-34
28. Macchi C., Greco M.F., Botta M., Sperandeo P. et al. Leptin, resistin, and proprotein convertase subtilisin/kexin type 9: the role of STAT3. Am. J. Pathol. 2020;190(11):2226–36. DOI: 10.1016/j.ajpath.2020.07.016
29. Al-Muzafar H.M., Alshehri F.S., Amin K.A. The role of pioglitazone in antioxidant, anti-inflammatory, and insulin sensitivity in a high fatcarbohydrate diet-induced rat model of insulin resistance. Braz. J. Med. Biol. Res. 2021;54(8):e10782. DOI: 10.1590/1414-431X2020e10782
30. Cobos-Palacios L., Ruiz-Moreno M.I., Vilches-Perez A., Vargas-Candela A. et al. Metabolically healthy obesity: inflammatory biomarkers and adipokines in elderly population. PLoS One. 2022;17(6):e0265362. DOI: 10.1371/journal.pone.0265362
31. Indulekha K., Surendar J., Anjana R.M., Geetha L. et al. Metabolic obesity, adipocytokines, and inflammatory markers in Asian Indians — CURES-124. Diabetes Technol. Ther. 2015;17(2):134–41. DOI: 10.1089/dia.2014.0202
32. Papadopoulos D.P., Makris T.K., Krespi P.G., Poulakou M. et al. Adiponectin and resistin plasma levels in healthy individuals with prehypertension. J. Clin. Hypertens. (Greenwich). 2005;7(12):729–33. DOI: 10.1111/j.1524-6175.2005.04888.x
33. Tafere G.G., Wondafrash D.Z., Zewdie K.A., Assefa B.T. et al. Plasma adipsin as a biomarker and its implication in type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2020;13:1855–61. DOI: 10.2147/DMSO.S253967
34. Gu X., Wang L., Liu S., Shan T. Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis. Metabolism. 2023;36139:155379. DOI: 10.1016/j. metabol.2022.155379
35. Guo D., Liu J., Zhang P., Yang X. et al. Adiposity measurements and metabolic syndrome are linked through circulating neuregulin 4 and adipsin levels in obese adults. Front. Physiol. 2021;12:667330. DOI: 10.3389/fphys.2021.667330
36. Milek M., Moulla Y., Kern M., Stroh C. et al. Adipsin serum concentrations and adipose tissue expression in people with obesity and type 2 diabetes. Int. J. Mol. Sci. 2022;23(4):2222. DOI: 10.3390/ijms23042222
37. Gómez-Banoy N., Guseh J.S., Li G., Rubio-Navarro A. et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat. Med. 2019;25(11):1739–47. DOI: 10.1038/s41591-019-0610-4
38. Lejawa M., Osadnik K., Czuba Z., Osadnik T. et al. Association of metabolically healthy and unhealthy obesity phenotype with markers related to obesity, diabetes among young, healthy adult men. analysis of MAGNETIC Study. Life (Basel). 2021;11(12):1350. DOI: 10.3390/life11121350
39. Wang J.S., Lee W.J., Lee I.T., Lin S.Y. et al. Association between serum adipsin levels and insulin resistance in subjects with various degrees of glucose intolerance. J. Endocr. Soc. 2018;3(2):403–10. DOI: 10.1210/js.2018-00359
40. Klimontov V.V., Bulumbaeva D.M., Bgatova N.P., Taskaeva Yu.S. et al. Serum adipokine concentrations in patients with type 2 diabetes: the relationships with distribution, hypertrophy and vascularization of subcutaneous adipose tissue. Diabetes Mellitus. 2019;22(4):336–47. (in Russian). DOI: 10.14341/DM10129
41. Kang S., Narazaki M., Metwally H., Kishimoto T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 2020;217(5):e20190347. DOI: 10.1084/jem.20190347
42. Kristóf E., Klusóczki Á., Veress R., Shaw A. et al. Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp. Cell Res. 2019;377(1–2):47–55. DOI: 10.1016/j.yexcr.2019.02.015
43. Kogelman L.J., Fu J., Franke L., Greve J.W. et al. Inter-tissue gene co-expression networks between metabolically healthy and unhealthy obese individuals. PLoS One. 2016;11(12):e0167519. DOI: 10.1371/ journal.pone.0167519
44. Knyazeva L.I., Okrachkova I.V., Bondyreva A.V., Maslova T.A. Changes of parameters of immune inflammation activity in patients with type 2 diabetes mellitus undergoing treatment. Modern Problems of Science and Education. 2012;5:21. (in Russian)
45. Tereshchenko I.V., Kayushev P.E. Tumor necrosis factor α and its role in pathologies. Russian Medical Inquiry. 2022;6(9):523–7. (in Russian). DOI: 10.32364/2587-6821-2022-6-9-523-527
46. Kovalyova Yu.V. Adipose tissue hormones and their role for female fertility and metabolic disorders. Arterial Hypertension. 2015;21(4):356–70. (in Russian). DOI: 10.18705/1607-419X-2015-21-4-356-370
47. Alzamil H. Elevated serum TNF-α is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance. J. Obes. 2020;2020:5076858. DOI: 10.1155/2020/5076858
48. Lee T.H., Jeon W.S., Han K.J., Lee S.Y. et al. Comparison of serum adipocytokine levels according to metabolic health and obesity status. Endocrinol. Metab. (Seoul). 2015;30(2):185–94. DOI: 10.3803/EnM.2015.30.2.185
49. Cӑtoi A.F., Pârvu A.E., Andreicuț A.D., Mironiuc A. et al. Metabolically healthy versus unhealthy morbidly obese: chronic inflammation, nitrooxidative stress, and insulin resistance. Nutrients. 2018;10(9):1199. DOI: 10.3390/nu10091199
Review
For citations:
Alferova V.I., Mustafina S.V. Adipocytokines Through the Prism of Human Metabolic Phenotypes. Title. 2023;22(4):18-23. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-4-18-23