The Role of Genetically Determined Deficiency of the Lectin Pathway of Complement Activation in Chronic Helicobacter pylori Among Children
https://doi.org/10.31550/1727-2378-2024-23-3-24-31
Abstract
Aim. To study the association of six polymorphic regions of MBL2 (rs11003125, rs7096206, rs7095891, rs1800450, rs1800451, rs5030737), two regions of FCN2 (rs7851696, rs17549193) and one region of MASP2 (rs72550870) with Helicobacter pylori infection and the severity of neutrophilic inflammation in gastric mucosa among children with recurrent abdominal pain.
Design. Genetic association study of single nucleotide polymorphisms, case — control type.
Materials and methods. 96 adolescents aged 12–17 years with recurrent abdominal pain were examined. Medical history, general clinical methods and fibrogastroscopy with a biopsy of the gastric mucosa were included in the medical testing. Biopsy samples were recorded and processed to assess the neutrophil infiltration and the presence of H. pylori. The results were interpreted according to the Sydney System of Gastritis Classification. Genotyping of allelic gene variants was carried out using real-time polymerase chain reaction (MBL2, MASP2), as well as the restriction analysis of amplification products of specific genome regions (MBL2, FCN2).
Results. A high rate of H. pylori colonization was associated with a high frequency of the L allele of the rs11003125 gene polymorphism of the MBL2 gene and with a decrease in the proportion of high MBL — expressing genotypes. Carriage of the Q allele of the rs7095891 gene polymorphism of the MBL2 gene was associated with less pronounced neutrophilic infiltration, and a high frequency of the T allele of the rs7851696 gene polymorphism of the FCN2 gene was associated with severe neutrophilic inflammation in gastric mucosa. No differences in the distribution of MASP2 genotypes were found.
Conclusion. The results obtained suggest that genetic defects in the production of MBL and ficolin-2 may cause chronic helicobacteriosis in children and more severe inflammation of gastric mucosa. Further study of these proteins seems to be promising for new approaches to the treatment and prevention of H. pylori complications in children to be identified.
About the Authors
S. Yu. TereshchenkoRussian Federation
3g Partisan Zheleznyak Str., Krasnoyarsk, 660022
M. V. Smolnikova
Russian Federation
3g Partisan Zheleznyak Str., Krasnoyarsk, 660022
N. N. Gorbacheva
Russian Federation
3g Partisan Zheleznyak Str., Krasnoyarsk, 660022
References
1. Zabala Torrres B., Lucero Y., Lagomarcino A.J. et al. Review: prevalence and dynamics of Helicobacter pylori infection during childhood. Helicobacter. 2017;22(5). DOI: 10.1111/hel.12399
2. Aguilera Matos I., Diaz Oliva S.E., Escobedo A.A. et al. Helicobacter pylori infection in children. BMJ Paediatrics Open. 2020;4(1):e000679. DOI: 10.1136/bmjpo-2020-000679
3. Nguyen J., Kotilea K., Bontems P., Miendje Deyi V.Y. Helicobacter pylori Infections in Children. Antibiotics (Basel). 2023;12(9):1440. DOI: 10.3390/antibiotics12091440
4. Garred P., Genster N., Pilely K. et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol. Rev. 2016;274(1):74–97. DOI: 10.1111/imr.12468
5. Tereshchenko S.Yu., Smolnikova M.V. Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection. Russian Journal of Infection and Immunity. 2019;9(2):229–238. (in Russian). DOI: 10.15789/2220-7619-2019-2-229-238
6. Smolnikova M.V., Tereshchenko S.Yu. Proteins of the lectin pathway of the complement system activation: immunobiological functions, genetics and involvement in the pathogenesis of human diseases // Russian Journal of Infection and Immunity. 2022;12(2):209–221. (in Russian). DOI: 10.15789/2220-7619-POT-1777
7. Kilpatrick D.C. Mannan-binding lectin: clinical significance and applications. Biochim. Biophys. Acta. 2002;1572(2–3):401–413. DOI: 10.1016/s0304-4165(02)00321-5
8. Stengaard-Pedersen K., Thiel S., Gadjeva M. et al. nherited deficiency of mannan-binding lectin-associated serine protease 2. N. Engl. J. Med. 2003;349(6):554–560. DOI: 10.1056/NEJMoa022836
9. Thiel S., Kolev M., Degn S. et al. Polymorphisms in mannan-binding lectin (MBL)-associated serine protease 2 affect stability, binding to MBL, and enzymatic activity. J. Immunol. 2009;182(5):2939–2947. DOI: 10.4049/jimmunol.0802053
10. Cedzyński M., Świerzko A.S. Components of the lectin pathway of complement in solid tumour cancers. Cancers (Basel). 2022;14(6):1543. DOI: 10.3390/cancers14061543
11. Bak-Romaniszyn L., Swierzko A., Szemraj J. et al. Mannan-binding lectin (MBL) in duodenal ulcer and gastritis. Polski Merkuriusz Lekarski Polish Medical Journal. 2009;26(155):412–415.
12. Scudiero O., Nardone G., Omodei D. et al. A mannose-binding lectin-defective haplotype is a risk factor for gastric cancer. Clin. Chem. 2006;52(8):1625–1627. DOI: 10.1373/clinchem.2006.071696
13. Wang F.Y., Tahara T., Arisawa T. et al. Mannan-binding lectin (MBL) polymorphism and gastric cancer risk in Japanese population. Dig. Dis. Sci. 2008;53(11):2904–2908. DOI: 10.1007/s10620-008-0249-3
14. Tahara T., Shibata T., Wang F.Y. et al. Mannan-binding lectin B allele is associated with a risk of developing more severe gastric mucosal atrophy in Helicobacter pylori-infected Japanese patients. Eur. J. Gastroenterol. Hepatol. 2009;21(7):781–786. DOI: 10.1097/MEG.0b013e328309c76b
15. Kuipers S., Aerts P.C., van Dijk H. Differential microorganism-induced mannose-binding lectin activation. FEMS Immunol. Med. Microbiol. 2003;36(1):33–39. DOI: 10.1016/S0928-8244(03)00032-4
16. Dixon M.F., Genta R.M., Yardley J.H., Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol. 1996;20(10):1161–1181. DOI: 10.1097/00000478-199610000-00001
17. Wallis R., Lynch N.J. Biochemistry and genetics of the collectins. In: Kilpatrick D. (ed.) Collagen-related lectins in innate immunity. Research Signpost; 2007:33–56.
18. Garred P., Honoré C., Ma Y.J. et al. MBL2, FCN1, FCN2 and FCN3 — the genes behind the initiation of the lectin pathway of complement. Mol. Immunol. 2009;46(14):2737–2744. DOI: 10.1016/j.molimm.2009.05.005
19. Monsey L., Best L.G., Zhu J. et al. The association of mannose binding lectin genotype and immune response to Chlamydia pneumoniae: The Strong Heart Study. PLoS One. 2019;14(1):e0210640. DOI: 10.1371/journal.pone.0210640
20. Eisen D.P., Minchinton R.M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 2003;37(11):1496–1505. DOI: 10.1086/379324
21. Eisen D.P. Mannose-binding lectin deficiency and respiratory tract infection. J. Innate Immun. 2010;2(2):114–122. DOI: 10.1159/000228159
22. Kalia N., Singh J., Kaur M. The ambiguous role of mannose-binding lectin (MBL) in human immunity. Open Med. 2021;16(1):299–310. DOI: 10.1515/med-2021-0239
23. Brodszki N., Frazer-Abel A., Grumach A.S. et al. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J. Clin. Immunol. 2020;40(4):576–591. DOI: 10.1007/s10875-020-00754-1
24. Rantala A., Lajunen T., Juvonen R. et al. Mannose-binding lectin concentrations, MBL2 polymorphisms, and susceptibility to respiratory tract infections in young men. J. Infect. Dis. 2008;198(8):1247–1253. DOI: 10.1086/591912
25. Zhang N., Zhuang M., Ma A. et al. Association of levels of mannose-binding lectin and the MBL2 gene with type 2 diabetes and diabetic nephropathy. PLoS One. 2013;8(12):e83059. DOI: 10.1371/journal.pone.0083059
26. Olszowski T., Adler G., Janiszewska-Olszowska J. et al. MBL2, MASP2, AMELX, and ENAM gene polymorphisms and dental caries in Polish children. Oral Dis. 2012;18(4):389–395. DOI: 10.1111/j.1601-0825.2011.01887.x
27. Yang Y., Wang W., Qin M. Mannose-binding lectin gene polymorphisms are not associated with susceptibility to severe early childhood caries. Hum. Immunol. 2013;74(1):110–13. DOI: 10.1016/j.humimm.2012.08.012
28. Alyousef Y.M., Borgio J.F., AbdulAzeez S. et al. Association of MBL2 Gene Polymorphism with Dental Caries in Saudi Children. Car. Res. 2017;51(1):12–16. DOI: 10.1159/000450963
29. Mokhtari M.J., Koohpeima F., Hashemi-Gorji F. Association of the risk of dental caries and polymorphism of MBL2 rs11003125 gene in iranian adults. Car. Res. 2019;53(1):60–64. DOI: 10.1159/000489572
30. Yokoyama E., Chávez-Saldaña M., Orozco L. et al. Influence of SNPs in genes that modulate lung disease severity in a group of Mexican patients with cystic fibrosis. Arch. Med. Res. 2018;49(1):18–26. DOI: 10.1016/j.arcmed.2018.04.010
31. El-Behedy E.M., Akeel N., El-Maghraby H.M., Shawky A. Serum level and genetic polymorphism of mannose-binding lectin in infants with neonatal sepsis at Zagazig University Hospitals. Egypt. J. Immunol. 2019;26(1):91–99.
32. Speletas M., Dadouli K., Syrakouli A. et al. MBL deficiency-causing B allele (rs1800450) as a risk factor for severe COVID-19. Immunobiology. 2021;226(6):152136. DOI: 10.1016/j.imbio.2021.152136
33. Cedzynski M., Nuytinck L., Atkinson A.P. et al. Extremes of l-ficolin concentration in children with recurrent infections are associated with single nucleotide polymorphisms in the FCN2 gene. Clin. Exp. Immunol. 2007;150(1):99–104. DOI: 10.1111/j.1365-2249.2007.03471.x
34. Kilpatrick D.C., St Swierzko A., Matsushita M. et al. The relationship between FCN2 genotypes and serum ficolin-2 (L-ficolin) protein concentrations from a large cohort of neonates. Human Immunol. 2013;74(7):867–871. DOI: 10.1016/j.humimm.2013.04.011
35. Świerzko A.S., Jarych D., Gajek G. et al. Polymorphisms of the FCN2 gene 3’UTR region and their clinical associations in preterm newborns. Front. Immunol. 2021;12:741140. DOI: 10.3389/fimmu.2021.741140
36. Haerynck F., Van Steen K., Cattaert T. et al. Polymorphisms in the lectin pathway genes as a possible cause of early chronic Pseudomonas aeruginosa colonization in cystic fibrosis patients. Hum. Immun. 2012;73(11):1175–1183. DOI: 10.1016/j.humimm.2012.08.010
37. Baccarelli A., Hou L., Chen J. et al. Mannose-binding lectin-2 genetic variation and stomach cancer risk. Int. J. Cancer. 2006;119(8):1970–1975. DOI: 10.1002/ijc.22075
38. Mortazavi E., Eslami B., Aghahosseini P. et al. Association of mannose-binding lectin rs1800450 and tumor necrotic factor-α rs1800620 polymorphism with Helicobacter pylori in type II diabetes mellitus. Monoclon. Antib. Immunodiagn. Immunother. 2017;36(5):236–241. DOI: 10.1089/mab.2017.0039
39. Worthley D.L., Bardy P.G., Gordon D.L., Mullighan C.G. Mannose-binding lectin and gastric cancer. Int. J. Cancer. 2007;120(12): 2751–2752. DOI: 10.1002/ijc.22662
40. Chang Y.W., Oh C.H., Kim J-W. et al. Combination of Helicobacter pylori infection and the interleukin 8–251T>A polymorphism, but not the mannose-binding lectin 2 codon 54G>A polymorphism, might be a risk factor of gastric cancer. BMC Cancer. 2017;17(1):388. DOI: 10.1186/s12885-017-3378-2
41. Tahara T., Shibata T., Wang F. et al. Genetic polymorphisms of molecules associated with innate immune responses, TRL2 and MBL2 genes in Japanese subjects with functional dyspepsia. J. Clin. Biochem. Nutr. 2010;47(3):217–223. DOI: 10.3164/jcbn.10-40
42. Ko G.H., Kang S.M., Kim Y.K. et al. Invasiveness of Helicobacter pylori into human gastric mucosa. Helicobacter. 1999;4(2):77–81. DOI: 10.1046/j.1523-5378.1999.98690.x
43. Bak-Romaniszyn L., Cedzyński M., Szemraj J. et al. Mannan-binding lectin in children with chronic gastritis. Scand. J. Immunol. 2006;63(2):131–135. DOI: 10.1111/j.1365-3083.2005.01719.x
Review
For citations:
Tereshchenko S.Yu., Smolnikova M.V., Gorbacheva N.N. The Role of Genetically Determined Deficiency of the Lectin Pathway of Complement Activation in Chronic Helicobacter pylori Among Children. Title. 2024;23(3):24-31. (In Russ.) https://doi.org/10.31550/1727-2378-2024-23-3-24-31