

Патогенетическая роль моноцитарного хемоаттрактанта

3.М. Нуржанова^{1,2}, О.А. Башкина¹, М.А. Самотруева¹, А.А. Шилова¹ ⊠

¹ ФГБОУ ВО «Астраханский государственный медицинский университет» Министерства здравоохранения Российской Федерации; Россия, г. Астрахань

² ГОУ АО «Астраханский областной социально-реабилитационный центр «Русь»; Россия, г. Астрахань

Цель обзора. Систематизировать современные научные исследования, изучающие роль моноцитарного хемоаттрактанта в развитии и прогрессировании различных заболеваний.

Основные положения. В настоящее время возрос интерес научного сообщества к вопросам патогенетической роли моноцитарномакрофагального звена цитокинового спектра в развитии ряда патологических изменений организма.

Заключение. Моноцитарный хемоаттрактант является одним из ключевых компонентов эндотелиальной дисфункции и, возможно, может быть представлен как биологический маркер различных заболеваний, что окажет значительное содействие в ранней диагностике и вопросах организации лечебного процесса.

Ключевые слова: моноцитарный хемоаттрактант, нервная система, дети.

Для цитирования: Нуржанова З.М., Башкина О.А., Самотруева М.А., Шилова А.А. Патогенетическая роль моноцитарного хемоаттрактанта. Доктор.Ру. 2023;22(7):53-57. DOI: 10.31550/1727-2378-2023-22-7-53-57

Pathogenetic Role of Monocyte Chemoattractant

Z.M. Nurzhanova^{1,2}, O.A. Bashkina¹, M.A. Samotrueva¹, A.A. Shilova¹

- ¹ Astrakhan State Medical University; 121, Bakinskaya str., Astrakhan, Russian Federation 414000
- ² Astrakhan Regional Social and Rehabilitation Center "Rus"; 14, Konovalova str., Astrakhan, Russian Federation 414042

ABSTRACT

Aim. To systematize modern scientific research that studies the role of monocytic chemoattractant in the development and progression of various diseases.

Key points. At present, the interest of the scientific community in the issues of the pathoge-netic role of the monocyte-macrophage link of the cytokine spectrum in the development of a number of pathological changes in the body has increased.

Conclusion. The monocyte chemoattractant is one of the key components of endothelial dysfunction and possibly can be presented as a biological marker of various diseases, which will greatly assist in early diagnosis and organization of the treatment process accordingly. Keywords: monocyte chemoattractant, nervous system, children.

For citation: Nurzhanova Z.M., Bashkina O.A., Samotrueva M.A., Shilova A.A. Pathogenetic role of monocytic chemoattractant. Doctor.Ru. 2023;22(7):53-57. (in Russian). DOI: 10.31550/1727-2378-2023-22-7-53-57

ВВЕДЕНИЕ

Ведущую патогенетическую роль в развитии патологического механизма при детском церебральном параличе играют деструктивные изменения нервных клеток. Основополагающим компонентом подобных изменений являются эксайтотоксичность и окислительный стресс.

Такие процессы, как оксидативный стресс и дисфункция эндотелия, утяжеляющие течение основного заболевания и способствующие развитию коморбидной патологии в виде изменений со стороны сердечно-сосудистой системы, взаимосвязаны.

Эндотелий, представляющий структурный компонент сосудистого русла, выполняет ряд сложных функций, включающих выработку гемостатических стабилизаторов, и обеспечивает процессы гемостаза. Другой задачей эндотелиального барьера является синтез биологически активных веществ, обеспечивающих вазоконстрикцию и вазодилатацию, что способствует регулированию состояния сосудистого тонуса и обеспечения кровоснабжения. Эндотелий активно участвует в процессах неоангиогенеза и артериогенеза. Другим важным функциональным аспектом эндотелия является адгезия лейкоцитов [1, 2]. Эндотелий также обеспечивает регуляцию проницаемости сосудистой стенки для различных веществ и миграции клеток через эндотелий [3]. Некоторые авторы выделяют иммунную функцию эндотелия, реализуемую за счет синтеза цитокинов и антигенпрезентирующей роли [4, 5].

Морфофункциональные преобразования эндотелиальных клеток под воздействием разных травмирующих элементов приводят к дезорганизации коммуникативных возможностей, расстройству функционирования эндотелиоцитов [6]. Клетки эндотелия первыми реагируют на трансформации в системе гемодинамики, изменения концентрации продуктов обмена веществ, вызывающие повреждение клеток. Так создаются условия для развития эндотелиальной дисфункции (ЭД), при которой видоизменяется баланс в системе гемостаза с преобладанием прокоагулянтных механизмов, сокращением синтеза и выделения в кровь вазодилататоров, увеличением высвобождения сосудосуживающих

[⊠] Шилова Анна Анатольевна / Shilova, A.A. — E-mail: ash14@list.ru

компонентов, проницаемости сосудистой стенки для лейкоцитов и возникновением итогового локального воспаления. Длительное действие агентов, являющихся основанием для развития ЭД, приводит к приобретению эндотелиальными клетками провоспалительных и протромботических свойств [7], развивается уменьшение количества стволовых эндотелиоцитов [8, 9]. Таким образом, восстановительные возможности эндотелия значительно сокращаются [10-12]. В настоящее время ЭД расценивается многими исследователями как важный патогенетический компонент сердечно-сосудистой и цереброваскулярной патологии [13]. Значительная функциональная эндотелиальная дезорганизация характеризуется нарушением регуляторного баланса сосудистого русла,

лического барьера и, как следствие, ограничению перфузии. При увеличении проницаемости гематоэнцефалического барьера развивается диапедез элементов плазмы в структуры артериального барьера, что сопровождается развитием отечных процессов вокруг сосуда и асептического воспаления [15].

изменением проницаемости сосудов, уменьшением продук-

ции антикоагулянтов, антиагрегантов, активаторов фибри-

нолиза и активации синтеза тромбогенных элементов [14].

ЭД при заболеваниях нервной системы, патогенетические

механизмы которых связаны с нарушением функционирова-

ния сосудов, приводит к изменениям работы гематоэнцефа-

В патогенетических аспектах кардиоваскулярной патологии принимает активное участие ЭД. Исследователями описаны такие состояния при атеросклеротических процессах, гипертонической болезни и др. ЭД может быть самостоятельным источником заболевания, а также основное заболевание может способствовать прогрессированию ЭД [16].

В последние годы изучается роль биологически активных веществ, ответственных за различные функции эндотелия, в реализации патогенетических реакций при заболеваниях ЦНС [8, 14]. Одним из компонентов, принимающим участие в развитии ЭД, являются моноцитарно-макрофагальные факторы цитокинового звена иммунитета в составе фактора роста эндотелия (VEGF) и моноцитарного хемоаттрактантного белка-1 (monocyte chemoattractant protein 1, MCP-1) [17-19], что подчеркивает перспективность определения их значимости в развитии патологических изменений в нервной системе, в частности, детского церебрального паралича [5, 6].

ОСНОВНЫЕ ПОЛОЖЕНИЯ

MCP-1 или CCL2 (C-C motif ligand) является представителем хемокинового класса цитокинов, к функциональным особенностями которых относится обеспечение двигательной активности лейкоцитов и перемещение их из кровеносного русла в ткани [14]. Синтез хемокинов активируется под воздействием патогенного агента и представляет собой начальную стадию иммунного ответа. Классификация хемокинов подразумевает разделение на 4 класса, различающиеся по количеству цистеинов. Так, классы СС, СХС и СХХХС включают 4 цистеина, класс C — 2. MCP-1 является представителем СС подсемейства цитокинов, состоит из 76 аминокислот и имеет молекулярную массу 13 кДа. Продукция МСР-1 осуществляется целым рядом различных клеток, в том числе моноцитами/макрофагами, клетками эндотелия, эпителия, гладкомышечными клетками и др. Функции МСР-1 разнообразны: он воздействует на хемотаксис, при этом является одним из наиболее активных представителей этого класса, представляет собой медиатор воспалительных процессов [20].

Синтез МСР-1 в структурах нервной системы осуществляется нейронами, астроцитами, микроглией, эндотелиоцитами [21-23]. Наиболее выражена экспрессия МСР-1 в нейронах коры головного мозга, гиппокампе, паравентрикулярном и супраоптическом ядрах гипоталамуса, ядрах лицевого и тройничного нерва, в мозжечке [19, 21].

Индукторами экспрессии МСР-1 являются цитокины (интерлейкин-1, фактор некроза опухоли- α , тромбоцитарный фактор роста, липополисахариды микробных клеток, киназы $ERK^{1}/_{2}$, р38 МАРК, ангиотензин II, интерферон- γ [24]. К активаторам синтеза относятся глюкоза, гипоксические явления головного мозга [25]. Результатом исследований экспрессии МСР у экспериментальной модели инсульта является обнаружение фактора, индуцируемого гипоксией, и фактора, стимулирующего экспрессию [26]. Имеются данные, что уровень концентрации МСР может свидетельствовать о степени выраженности ЭД [27]. Реакция эндотелиоцитов на активацию продукции МСР выражается в стимуляции адгезивной функции, что влияет на увеличение атерогенного и тромбоэмболического эффектов [28].

МСР-1 имеет большое значение в процессе воспаления, где является активатором синтеза других факторов воспалительного процесса, что индуцирует прогрессирование патологических изменений. Цитокин в здоровых сосудах отсутствует, но при атеросклеротических процессах, инфаркте его экспрессия повышена [29]. Наблюдается повышение экспрессии MCP-1 у пациентов с ишемической болезнью сердца [30]. В.А. Бунин и соавт. отметили повышение концентрации МСР-1 соответственно стадиям заболевания и сделали заключение о возможности его использования для малоинвазивной диагностики развития ишемической болезни сердца с дифференциацией по стадиям заболевания [31].

Многие авторы описывают повышение концентрации МСР-1 при ревматоидном артрите, воспалительных процессах в костной ткани и аллергических процессах. Повышение уровня МСР-1 наблюдалось при рассеянном склерозе, болезни Альцгеймера [20].

Несмотря на тот факт, что большинство данных подтверждают роль МСР-1 в развитии патологии, связанной с ожирением, в некоторых исследованиях наблюдаются неоднозначные результаты. Так, Ю.И. Рагино и соавт. была обнаружена более низкая концентрация МСР-1 у пациентов с сочетанием абдоминального ожирения и ишемической болезни сердца в сравнении с пациентами с абдоминальным ожирением [32, 33].

В эксперименте на лабораторных животных доказано, что на модели диабета отмечается значительное повышение МСР-1, что свидетельствует об участии МСР-1 в патофизиологии заболевания [21, 34].

Имеются данные о двойной роли МСР-1 при опухолевом процессе: в начальной стадии МСР-1 обеспечивает функцию иммунобиологического надзора, на более поздних этапах — поддержание роста и метастазирования опухоли [35]. Установлено, что прерывание взаимодействия МСР с его рецепторами угнетает прогрессирование и метастазирование опухоли [22, 36].

В структурах центральной нервной системы МСР-1 синтезирует ряд клеток, в том числе нейроны, астроциты, микроглия и эндотелиоциты [21, 37]. МСР-1 прямо или косвенно вовлекается в механизмы заболеваний нервной системы, в основе которых находятся нейровоспаление и нейродегенерация. МСР-1 способен проникать через гематоэнцефалический барьер и активировать развитие и прогрессирование различных заболеваний, в том числе ишемические процессы головного мозга, кровоизлияния [25].

Результатом исследовательских работ по депрессии стало выявление связи между повышением концентрации в крови МСР-1 и выраженностью клинических симптомов депрессии [38].

С. Cerri и соавт. в исследованиях эпилепсии продемонстрировали, что МСР является ключевым медиатором в молекулярных путях, которые связывают периферическое воспаление с повышенной возбудимостью нейронов [39]. При внутримозговом введении анти-МСР-антител наблюдалось купирование эпилептоидных припадков [40].

Прогрессирующее нарастание МСР-1 доказано при черепно-мозговой травме средней и тяжелой степени, что может служить прогностическим маркером тяжести травмы [37]. A.P. Di Battista и соавт. наблюдали повышенный синтез цитокина при неблагоприятном исходе заболевания. При легкой степени травмы экспрессия МСР-1 выражена в меньшей степени [41].

ЗАКЛЮЧЕНИЕ

Увеличение концентрации в крови МСР-1 свидетельствует о первых признаках патологических изменений сосудов, что в дальнейшем приводит к апоптозу, дифференцировке эндотелиальных и гладкомышечных клеток [42].

Таким образом, в настоящее время не вызывает сомнений тот факт, что рассмотренный в научном обзоре МСР-1 принимает непосредственное участие в развитии и прогрессировании различных заболеваний практически всех систем организма человека и обладает достаточно весомым диагностическим потенциалом.

Внедрение МСР-1 как биологического маркера в клиническую практику существенно расширило бы возможности диагностики многих заболеваний, позволило проводить мониторинг прогрессирования патологических проявлений, сопутствующей коморбидной патологии и контроль эффективности терапии.

Вклад авторов / Contributions

Все авторы внесли существенный вклад в подготовку статьи, прочли и одобрили финальную версию перед публикацией. Вклад каждого из авторов: Нуржанова З.М. — планирование исследования, анализ литературы, сбор и систематизация данных, интерпретация результатов исследования; Башкина О.А. — разработка концепции и дизайна, окончательное утверждение рукописи для публикации; Самотруева М.А. проверка критически важного интеллектуального содержания, консультирование по вопросам сбора и анализа информации, интерпретации данных; Шилова А.А. — подготовка черновика рукописи; редактирование и оформление рукописи, анализ и интерпретация данных, доработка исходного варианта рукописи.

All authors made a significant contribution to the preparation of the article, read and approved the final version before publication. Special contribution: Nurzhanova, Z.M. — research planning, literature analysis, data collection and systematization, interpretation of research results; Bashkina, O.A. — development of concept and design, final approval of the manuscript for publication; Samotrueva, M.A. — checking critical intellectual content, consulting on information collection and analysis, data interpretation; Shilova, A.A. — preparation of a draft manuscript; editing and design of the manuscript, analysis and interpretation of data, revision of the original version of the manuscript.

Конфликт интересов / Disclosure

Авторы заявляют об отсутствии возможных конфликтов интересов.

The authors declare no conflict of interest.

Финансирование / Funding source

Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

This study was not supported by any external sources of funding.

Об авторах / About the authors

Нуржанова Зульфия Маликовна / Nurzhanova, Z.M. — аспирант кафедры факультетской педиатрии ФГБОУ ВО Астраханский ГМУ Минздрава России. 414000, Россия, г. Астрахань, ул. Бакинская, д. 121; заведующая отделением кинезиотерапии ГОУ АО «Астраханский областной социально-реабилитационный центр "Русь"». 414042, Россия, г. Астрахань, ул. Коновалова, д. 14. eLIBRARY.RU SPIN: 6209-4880. https://orcid. org//0000-0003-4635-5694. E-mail: lax-07@mail.ru

Башкина Ольга Александровна / Bashkina, О.А. — д.м.н., профессор, зав. кафедрой факультетской педиатрии ФГБОУ ВО Астраханский ГМУ Минздрава России. 414000, Россия, г. Астрахань, ул. Бакинская, д. 121. eLIBRARY.RU SPIN: 3620-0724. https://orcid.org//0000-0003-4168-4851. E-mail: bashkina1@mail.ru

Самотруева Марина Александровна / Samotrueva, M.A. — д.м.н., профессор, зав. кафедрой фармакогнозии, фармацевтической технологии и биотехнологии ФГБОУ ВО Астраханский ГМУ Минздрава России. 414000, Россия, г. Астрахань, ул. Бакинская, д. 121. eLIBRARY.RU SPIN: 5918-1341. https://orcid.org//0000-0001-5336-4455. E-mail: ms1506@mail.ru

Шилова Анна Анатольевна / Shilova, А.А.— к.м.н., ассистент кафедры факультетской педиатрии ФГБОУ ВО Астраханский ГМУ Минздрава России. 414000, Россия, г. Астрахань, ул. Бакинская, д. 121. eLIBRARY.RU SPIN: 3480-6839. https://orcid.org//0000-0002-8647-6565. E-mail: ash14@list.ru

ЛИТЕРАТУРА/REFERENCES

- 1. Иванов А.Н., Гречихин А.А., Норкин И.А., Пучиньян Д.М. Методы диагностики эндотелиальной дисфункции. Регионарное кровообращение и микроциркуляция. 2014;13(4):4-11. Ivanov A.N., Grechikhin A.A., Norkin I.A., Puchinyan D.M. Methods of endothelial dysfunction diagnosis. Regional blood circulation and microcirculation. 2014;13(4):4–11. (in Russian). DOI: 10.24884/1682-6655-2014-13-4-4-11
- 2. Васина Л.В., Петрищев Н.Н., Власов Т.Д. Эндотелиальная дисфункция и ее основные маркеры. Регионарное кровообращение и микроциркуляция. 2017;16(1):4-15. Vasina L.V., Petrishchev N.N., Vlasov T.D. Markers of endothelial dysfunction. Regional blood circulation and microcirculation. 2017;16(1):4-15. (in Russian). DOI: 10.24884/1682-6655-2017-16-1-4-15
- 3. Шадманов А.К., Абдурахимов А.Х., Хегай Л.Н., Аскаров О.О. Роль дисфункции эндотелия в патогенезе заболеваний. Re-health journal. 2021;2(10):122-129. Shadmanov A.K., Abdurakhimov A.H., Khegay L.N., Askarov O.O. The role of endothelial dysfunction in the pathogenesis of diseases. Re-health journal. 2021;2(10): 122-129. (in Russian).
- 4. Krausgruber T., Fortelny N., Fife-Gernedl V. et al. Structural cells are key regulators of organ-specific immune responses. Nature. 2020;583(7815):296-302. DOI: 10.1038/s41586-020-2424-4
- 5. Власова Т.И., Петрищев Н.Н., Власов Т.Д. Дисфункция эндотелия как типовое патологическое состояние. Регионарное кровообращение и микроциркуляция. 2022;21(2):4-15. Vlasova T.I., Petrishchev N.N., Vlasov T.D. Endothelial dysfunction as the typical pathological state. Regional blood circulation and microcirculation.

- 2022;21(2):4-15. (in Russian). DOI: 10.24884/1682-6655-2022-
- 6. Мельникова Ю.С., Макарова Т.П. Эндотелиальная дисфункция как центральное звено патогенеза хронических болезней. Казанский медицинский журнал. 2015;96(4):659-665. Mel'nikova Y.S., Makarova T.P. Endothelial dysfunction as the key link of chronic diseases pathogenesis. Kazan medical journal. 2015;96(4:659-665. (in Russian). DOI: 10.17750/KMJ2015-659
- 7. Chiva-Blanch G., Sala-Vila A., Crespo J. et al. The Mediterranean diet decreases pro-thrombotic microvesicle release in asymptomatic individuals at high cardiovascular risk. Clin. Nutr. 2020;39(11): 3377-3384. DOI: 10.1016/j.clnu.2020.02.0
- 8. Мичурова М.С., Калашников В.Ю., Смирнова О.М. и др. Роль эндотелиальных прогениторных клеток в развитии осложнений сахарного диабета. Сахарный диабет. 2015;18(1):24-32. Michurova M.C., Kalashnikov V.Yu., Smirnova O.M. et al. Endothelial progenitor cells in diabetes complications. Diabetes mellitus. 2015;18(1):24-32. (in Russian).
- 9. Мартынов М.Ю., Боголепова А.Н., Ясаманова А.Н. Эндотелиальная дисфункция при COVID-19 и когнитивные нарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(6):93-99. Martynov M.Yu, Bogolepova A.N, Yasamanova A.N. Endothelial dysfunction in COVID-19 and cognitive impairment. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2021;121(6):93-99. (in Russian). DOI: 10.17116/ jnevro202112106193
- 10. Афонасьева Т.Н. Эндотелиальная дисфункция. Возможности ранней диагностики. Здоровье и образование в XXI веке. 2016;18(11):101–104. Afonasieva T.M. Endothelial dysfunction. Possibilities of early diagnosis. Health and education in the XXI century. 2016;18(11):101-104 (in Russian).
- 11. Гоженко А.И., Кузнецова А.С., Кузнецова Е.С. и др. Эндотелиальная дисфункция в патогенезе осложнений сахарного диабета. Сообщение І. Эндотелиальная дисфункция: этиология, патогенез и методы диагностики. Endokrynologiya. 2017;22(2):171-81. Gozhenko A.I., Kuznetsova H.S., Kuznetsova K.S. et al. Endothelial dysfunction in the pathogenesis of diabetes complications. The message I. Endothelial dysfunction: etiology, pathogenesis and diagnostic methods. Endokrynologiya. 2017;22(2):171-81.
- 12. Степанова Т.В., Иванов А.Н., Попыхова Э.Б., Лагутина Д.Д. Молекулярные маркеры эндотелиальной дисфункции. Современные проблемы науки и образования. 2019;(1):37. Stepanova T.V., Ivanov A.N., Popykhova E.B., Lagutina D.D. Molecular markers of endothelial dysfunction. Modern problems of science and education. 2019;(1):37. (in Russian).
- 13. Кузнецова И.В. Эндотелиальная дисфункция как связующее звено климактерического синдрома и сердечно-сосудистых заболеваний. Эффективная фармакотерапия. 2019;15(32):32-40. Kuznetsova I.V. Endothelial dysfunction as a link between menopausal syndrome and cardiovascular diseases. Effective pharmacotherapy. 2019;15(32):32-40. (in Russian). DOI: 10.33978/2307-3586-2019-15-32-32-40
- 14. Амелина И.П., Соловьева Э.Ю. Окислительный стресс и воспаление как звенья одной цепи у больных с хроническими цереброваскулярными заболеваниями. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019;119(4):106-114. Amelina I.P., Solov'eva E.Iu. Oxidative stress and inflammation as links in a chain in patients with chronic cerebrovascular diseases. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2019;119(4):106–114. (in Russian). DOI: 10.17116/jnevro2019119041106
- 15. Пизов Н.А., Пизов А.В., Скачкова О.А., Пизова Н.В. Эндотелиальная функция в норме и при патологии. Медицинский совет. 2019;(6):154-159. Pizov A.V., Pizov N.A., Skachkova O.A., Pizova N.V. Endothelial function in normal and pathological conditions. Medical Council. 2019;(6):154-159. (in Russian). DOI: 10.21518/2079-701X-2019-6-154-159
- 16. Фатеева В.В., Воробьева О.В. Маркеры эндотелиальной дисфункции при хро-нической ишемии мозга. Журнал неврологии u ncuxuampuu. 2017;117(4):107-111. Fateeva V.V., Vorob'eva O.V. Cerebral markers of endothelial dysfunction in chronic brain ischemia. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova.

- 2017;117(4):107-111. DOI: 10.17116/ (in Russian). jnevro201711741107-111
- 17. Садикова Р.И., Муталова Э.Г. Влияние цитокиновой сети и роль молекул межклеточной адгезии на развитие эндотелиальной дисфункции больных острым инфарктом миокарда. Практическая медицина. 2018;16(9):92-96. Sadikova R.I., Mutalova E.G. Effect of the cytokine network and role of intercellular adhesion molecules in endothelial dysfunction development in patients with acute myocardial infarction. Practical Medicine. 2018;16(9):92-96. (in Rus-sian).
- 18. Dommel S., Blüher M. Does C-C motif chemokine ligand 2 (CCL2) link obesity to a pro-inflammatory state? Int. J. Mol. Sci. 2021;22(3):1500. DOI: 10.3390/ijms22031500
- 19. Нуржанова З.М., Шилова А.А., Башкина О.А., Самотруева М.А. Оценка уровня эндотелиального фактора роста сосудов и моноцитарного хемоаттрактанта при детском церебральном параличе. Человек и его здоровье. 2021;24(3):33-38. Nurzhanova Z.M., Shilova A.A., Bashkina O.A., Samotrueva M.A. Estimation of the level of endothelial factor of vascular growth and monocytic chemoattractant in children cerebral palsy. Humans and their health. 2021;24(3):33-38. (in Russian). DOI: 10.21626/ vestnik/2021-3/04
- 20. Никитина В.В., Захарова Н.Б. Значение МСР-1 как предиктора сосудистых нарушений. Саратовский научно-медицинский журнал. 2010;6(4):786-790. Nikitina V.V., Zaharova N.B. Value MCP-1 as predict vascular disturbances. Saratov Journal of Medical Scientific Research. 2010;6(4):786–790. (in Russian)
- 21. Афонин А.А., Лебеденко А.А., Панова И.В. и др. Роль моноцитарного хемоаттрактантного протеина-1 в нарушении гематоэнцефалического барьера и формировании церебральной патологии. Современные проблемы науки и образования. 2022; (6-2):8. Afonin A.A., Lebedenko A.A., Panova I.V. et al. Role of monocytic chemoattractant protein-1 in violation of the blood-brain barrier and the formation of cerebral pathology. Modern problems of science and education. 2022;(6-2):8. (in Russian)
- 22. Матвеева Л.В., Капкаева Р.Х., Чудайкин А.Н., Мишанина Л.С. Изменения моноцитарного хемоаттрактантного протеина-1 при Helicobacter pylori-ассоциированных гастродуоденальных заболеваниях. Инфекция и иммунитет. 2018;8(2):150-156. Matveeva L.V., Kapkaeva R.C., Chudajkin A.N., Mishanina L.S. Changes monocyte chemoattractants protein-1 in Helicobacter pylori-associated gastroduodenal diseases. Russian Journal of Infection and Immunity. 2018;8(2):150-156. (in Russian). DOI: 10.15789/2220-7619-2018-2-150-156
- 23. Колотов К.А., Распутин П.Г. Моноцитарный хемотаксический протеин-1 в физиологии и медицине. Пермский медицинский журнал. 2018;35(3):99-105. Kolotov K.A., Rasputin P.G. Monocytic chemotactic protein-1 in physiology and medicine (review of literature). Perm Medical Journal. 2018;35(3):99-105. (in Russian). DOI: 10.17816/pmj35399-105
- 24. Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. J. Panee. Cytokine. 2012;60:1-12. DOI: 10.1016/j. cyto.2012.06.018
- 25. Батюшин М.М., Гадаборшева Х.З., Сарвилина И.В. и др. Взаимосвязь МСР-1 и тубулоинтерстициального фиброза при хроническом гломерулонефрите. Нефрология. 2017;21(5): 22-27. Batiushin M.M., Gadaborsheva H.Z., Sarvilina I.V. et al. The relationship of MCP-1 and tubulointerstitial fibrosis in chronic glomerulonephritis. nephrology (Saint-Petersburg). 2017;21(5): 22-27. (in Russian). DOI: 10.24884/1561-6274-2017-21-5-19-24
- 26. Fabene P.F., Bramanti P., Constantin G. The emerging role for chemokines in epilepsy. J. Neuroimmunol. 2010. 27;224(1-2): 22-27. DOI: 10.1016/j.jneuroim.2010.05.016
- 27. Фатеева В.В., Воробьева О.В. Маркеры эндотелиальной дисфункции при хронической ишемии мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017;117(4):107-111. Fateeva V.V., Vorob'eva O.V. Cerebral markers of endothelial dysfunction in chronic brain ischemia. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2017;117(4):107-111. (in Russian). DOI: 10.17116/jnevro201711741107-111
- 28. Kwaifa I.K., Bahari H., Yong Y.K., Noor S.M. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and

- clinical implications. Biomolecules. 2020;10(2):291. DOI: 10.3390/biom10020291
- 29. Москалёв А.В., Сбойчаков В.Б., Цыган В.Н., Апчел А.В. Роль хемокинов в иммунопатогенезе атеросклероза. Вестник Российской Военно-медицинской академии. 2018;20(1):195–202. Moskalev A.V., Sboychakov V.B., Tsygan V.N., Apchel A.V. Chemokines' role in immunopathogenesis of atherosclerosis. Bulletin of the Russian Military Medical Academy. 2018;20(1):195–202. (in Russian). DOI: 10.17816/brmma12310
- 30. Чумакова С.П., Уразова О.И., Шипулин В.М. и др. Дифференциация и субпо-пуляционный состав VEGFR2+моноцитов крови и костного мозга при ишемической кардиомиопатии. Бюллетень сибирской медицины. 2022;21(3):120—131. Chumakova S.P., Urazova O.I., Shipulin V.M. et al. Differentiation and subpopulation composition of VEGFR2+ cells in the blood and bone marrow in ischemic cardiomyopathy. Bulletin of Siberian Medicine. 2022;21(3):120—131. (in Russian). DOI: 10.20538/1682-0363-2022-3-120-131
- 31. Бунин В.А., Линькова Н.С., Пальцева Е.М., Козлов К.Л. Уровень цитокина МСР-1 в периферических тканях как маркер прогрессирования ишемической болезни сердца у лиц пожилого возраста. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;6(4):14–15. Bunin V.A., Linkova N.S., Palmseva E.M., Kozlov K.L. Levels of the MCP-1 cytokine in peripheral tissues as a marker of progression of coronary heart disease in the elderly. Complex problems of cardiovascular diseases. 2017;6(4):14–15. (in Russian).
- 32. Рагино Ю.И., Щербакова Л.В., Облаухова В.И. и др. Адипокины крови у молодых людей с ранней ишемической болезнью сердца на фоне абдоминального ожирения. Кардиология. 2021;61(4):32–38. Ragino Yu.I., Shcherbakova L.V., Oblaukhova V.I. et al. Blood adipokins in young people with early ischemic heart disease on the background of abdominal obesity. Kardiologiia. 2021;61(4):32–38. (in Russian). DOI: 10.18087/cardio.2021.4.n1369
- 33. Шишкин А.Н., Князева А.И. Эндотелиальная дисфункция у больных с ожирением. Регионарное кровообращение и микроциркуляция. 2022;21(3):4–11. Shishkin A.N., Kniazeva A.I. Endothelial dysfunction in patients with obesity. Regional blood circulation and microcirculation. 2022;21(3):4–11. (in Russian). DOI: 10.24884/1682-6655-2022-21-3-4-11
- 34. Marisa C., Lucci I., Di Giulio C. et al. MCP-1 and MIP-2 expression and production in BB diabetic rat: effect of chronic hypoxia. Mol.

- Cell. Biochem. 2005;276(1-2):105-111. DOI: 10.1007/s11010-005-3556-4
- 35. Матвеева Л.В. Изменения моноцитарного хемоаттрактантного протеина-1 при раке желудка. Успехи молекулярной онкологии. 2017;4(4):137. Matveeva L.V. Changes in monocytic chemoattractant protein-1 in gastric cancer. Advances in molecular oncology. 2017;4(4):137. (in Russian)
- 36. Li M., Knight D.A., Snyder A.L. et al. A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology. 2013;2(7):e25474. DOI: 10.4161/onci.25474
- 37. Huie J.R., Diaz-Arrastia R., Yue J.K. et al. Testing a multivariate proteomic panel for traumatic brain injury biomarker discovery: A TRACK-TBI Pilot Study. J. Neurotrauma. 2019;36(1):100–110. DOI: 10.1089/neu.2017.5449
- 38. Воробьева О.В., Фатеева В.В. Связь маркеров эндотелиальной дисфункции с выраженностью депрессии у пациентов среднего возраста с церебральной микроангиопатией. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(4):7–11. Vorob'eva O.V., Fateeva V.V. Association of markers of endothelial dysfunction with depression in middle-aged patients with cerebral microangiopathy. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(4):7–11. (in Russian). DOI: 10.17116/jnevro20211210417
- 39. Cerri C., Genovesi S., Allegra M. et al. The Chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J. Neurosci. 2016;36(13):3777–3788. DOI: 10.1523/JNEUROSCI.0451-15.2016
- Wang C., Yang L., Zhang J. et al. Higher expression of monocyte chemoattractant protein 1 and its receptor in brain tissue of intractable epilepsy patients. J. Clin. Neurosci. 2016;28:134–140. DOI: 10.1016/j.jocn.2015.07.033
- 41. Di Battista A.P., Rhind S.G., Hutchison M.G. et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury.

 J. Neuroinflammation. 2016;13:40. DOI: 10.1186/s12974-016-0500-3
- 42. Рагино Ю.И., Стрюкова Е.В., Мурашов И.С. и др. Ассоциация факторов эндотелиальной дисфункции с наличием нестабильных атеросклеротических бляшек в коронарных артериях. Российский кардиологический журнал. 2019;(5):26−29. Ragino Yu.I., Stryukova E.V., Murashov I.S. et al. Association of endothelial dysfunction factors with the presence of unstable atherosclerotic plaques in the coronary arteries. Russian Journal of Cardiology. 2019;(5):26−29. (in Russian). DOI: 10.15829/1560-4071-2019-5-26-29

 □

Поступила / Received: 07.06.2023

Принята к публикации / Accepted: 06.10.2023